MHC class II proteins mediate sialic acid independent entry of human and avian H2N2 influenza A viruses
Ontology highlight
ABSTRACT: Influenza A viruses (IAV) cause seasonal outbreaks that pose a substantial burden on human health. They are also a zoonotic threat as avian and swine IAV can be a source for pandemic influenza. Receptor specificity is a critical determinant of tropism, host range and transmissibility of IAV and thus, plays a crucial role in zoonotic IAV infections1-3. Avian, swine and human IAV bind sialic acid on host cell glycans as their common receptor but differ in sialic acid specificity4,5. In contrast, bat IAV of the H17 and H18 subtypes cannot use sialic acid and require MHC class II complexes for host cell entry6-8. It is unknown how this difference in receptor specificity evolved and if dual receptor specificity for sialic acid and MHC class II is possible. Here, we show that human H2N2 IAV and related avian H2N2 possess dual receptor specificity. In addition to their known sialic acid-dependent entry they can use MHC class II as alternative entry pathway, independent of sialic acid. Of note, MHC class II from humans, pigs, ducks, swans and chickens but not from bats can mediate H2 IAV entry and the ability to use this alternative entry pathway is conserved in current Eurasian avian H2 IAV. Our results demonstrate that IAV can possess dual receptor specificity for sialic acid and MHC class II and suggest a role for MHC class II-dependent entry in zoonotic IAV infections.
Project description:The emergence of influenza A viruses (IAV) from zoonotic reservoirs poses a great threat to human health. As seasonal vaccines are ineffective against zoonotic strains, and newly transmitted viruses can quickly acquire drug resistance, there remains a need for host- directed therapeutics against IAV. Here, we performed a genome-scale CRISPR/Cas9 knockout screen in human lung epithelial cells with a human isolate of an avian H5N1 strain. Several genes involved in sialic acid biosynthesis and related glycosylation pathways were highly enriched post-H5N1 selection, including SLC35A1, a sialic acid transporter essential for IAV receptor expression and thus viral entry. Importantly, we have identified capicua (CIC) as a negative regulator of cell intrinsic immunity, as loss of CIC resulted in heightened antiviral responses and restricted replication of multiple viruses. Therefore, our study demonstrates that the CRISPR/Cas9 system can be utilized for the discovery of host factors critical for the replication of intracellular pathogens.
Project description:Zoonotic influenza A viruses of avian origin can cause severe disease in individuals, or even global pandemics, and thus pose a threat to human populations. Waterfowl and shorebirds are believed to be the reservoir for all influenza A viruses, but this has recently been challenged by the identification of novel influenza A viruses in bats. The major bat influenza A virus envelope glycoprotein, haemagglutinin, does not bind the canonical influenza A virus receptor, sialic acid or any other glycan, despite its high sequence and structural homology with conventional haemagglutinins. This functionally uncharacterized plasticity of the bat influenza A virus haemagglutinin means the tropism and zoonotic potential of these viruses has not been fully determined. Here we show, using transcriptomic profiling of susceptible versus non-susceptible cells in combination with genome-wide CRISPR-Cas9 screening, that the major histocompatibility complex class II (MHC-II) human leukocyte antigen DR isotype (HLA-DR) is an essential entry determinant for bat influenza A viruses. Genetic ablation of the HLA-DR α-chain rendered cells resistant to infection by bat influenza A virus, whereas ectopic expression of the HLA-DR complex in non-susceptible cells conferred susceptibility. Expression of MHC-II from different bat species, pigs, mice or chickens also conferred susceptibility to infection. Notably, the infection of mice with bat influenza A virus resulted in robust virus replication in the upper respiratory tract, whereas mice deficient for MHC-II were resistant. Collectively, our data identify MHC-II as a crucial entry mediator for bat influenza A viruses in multiple species, which permits a broad vertebrate tropism.
Project description:Influenza A virus (IAV) pandemics result from interspecies transmission events within the avian reservoir and further into mammals including humans. Investigating the molecular basis for virus–host interactions enabling this process is vital to understand zoonotic IAV spread. Receptor incompatibility has been suggested to limit zoonotic IAV transmission from the wild bird reservoir as well as between different bird species. Using glycoproteomics, we have studied the repertoires of expressed glycan structures with focus on putative receptors for IAV in mallards, chickens and tufted ducks; three bird species with different roles in the zoonotic ecology of IAV. The methodology used could not only pinpoint specific glycan structures to the specific glycosylation sites of identified glycoproteins but could also be used to successfully discriminate α2,3- from α2,6-linked terminal sialic acids by careful analysis of oxonium ions released from glycopeptides during MS/MS (MS2), and MS/MS/MS (MS3). Our analysis clearly demonstrated that all three bird species can produce complex α2,3 and α2,6-linked Neu5Ac N-glycans including α2,3-linked sialyl Lewis structures, as well as both N- and O- glycans terminated with both α2,3 and α2,6-linked Neu5Ac. Furthermore, we reveal many similarities in the repertoires of expressed receptors both between the bird species investigated and to previously published data from pigs and humans. Our findings of sialylated glycan structures previously anticipated to be mammalian specific in all three bird species have major implications for our understanding of the role of receptor incompatibility in interspecies transmission of IAV.
Project description:Influenza A virus (IAV) is a zoonotic pathogen causing respiratory infections in humans and other mammalian species. Besides the potential to cause pandemics, seasonal IAV causes high medical and economical burden due to 3 to 5 million cases of severe respiratory illness and up to 500,000 deaths every year. Increasing resistance against clinically used anti influenza drugs and an insufficient vaccine protection urge the development of new antiviral strategies to counteract this constant threat to global health. One new approach focuses on cellular factors involved in the IAV life cycle as potential drug targets. Particularly promising are kinases and their target proteins, as kinase inhibitors comprise up to 30% of drug discovery programs in the pharmaceutical industry. In this project, we aim to find suitable candidates for the development of host factor targeted antivirals by using state-of-the-art quantitative phosphoproteomics to reveal the unique phosphoproteome dynamics that occur in the host cell within minutes of IAV infection and enable entry of the virus into its host cell. We identified 3,920 host proteins phosphorylated by infection with avian and seasonal human IAV strains. Among them are known entry factors such as the human epidermal growth factor receptor (EGFR) and members of the phosphoinositid-3-kinase (PI3K) pathway, which validate our approach.
Project description:Influenza A virus infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic influenza A virus (IAV) strains replicate efficiently in permissive human cells, many avian IAV cause abortive non-productive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or down-regulated in the course of permissive vs. non-permissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive vs. non-permissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as pro-viral host factor since its down-regulation inhibited efficient propagation of seasonal IAV while over-expression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and non-permissive imfluenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target.
Project description:There is increasing recognition of the prognostic significance of tumor cell major histocompatibility complex (MHC) class II expression in anti-cancer immunity. Relapse of acute myeloid leukemia (AML) following allogeneic stem cell transplantation (alloSCT) has recently been linked to MHC class II silencing in leukemic blasts; however, the regulation of MHC class II expression remains incompletely understood. Utilizing unbiased CRISPR-Cas9 screens, we identify that the C-terminal binding protein (CtBP) complex transcriptionally represses MHC class II pathway genes, while the E3 ubiquitin ligase complex component FBXO11 mediates degradation of CIITA, the principal transcription factor regulating MHC class II expression. Targeting these repressive mechanisms selectively induces MHC class II upregulation across a range of AML cell lines. Functionally, MHC class II+ leukemic blasts stimulate antigen-dependent CD4+ T cell activation and potent anti-tumor immune responses, providing fundamental insights into the graft-versus-leukemia effect. These findings establish the rationale for therapeutic strategies aimed at restoring tumor-specific MHC class II expression to salvage AML relapse post-alloSCT and also potentially to enhance immunotherapy outcomes in non-myeloid malignancies.
Project description:There is increasing recognition of the prognostic significance of tumor cell major histocompatibility complex (MHC) class II expression in anti-cancer immunity. Relapse of acute myeloid leukemia (AML) following allogeneic stem cell transplantation (alloSCT) has recently been linked to MHC class II silencing in leukemic blasts; however, the regulation of MHC class II expression remains incompletely understood. Utilizing unbiased CRISPR-Cas9 screens, we identify that the C-terminal binding protein (CtBP) complex transcriptionally represses MHC class II pathway genes, while the E3 ubiquitin ligase complex component FBXO11 mediates degradation of CIITA, the principal transcription factor regulating MHC class II expression. Targeting these repressive mechanisms selectively induces MHC class II upregulation across a range of AML cell lines. Functionally, MHC class II+ leukemic blasts stimulate antigen-dependent CD4+ T cell activation and potent anti-tumor immune responses, providing fundamental insights into the graft-versus-leukemia effect. These findings establish the rationale for therapeutic strategies aimed at restoring tumor-specific MHC class II expression to salvage AML relapse post-alloSCT and also potentially to enhance immunotherapy outcomes in non-myeloid malignancies.
Project description:There is increasing recognition of the prognostic significance of tumor cell major histocompatibility complex (MHC) class II expression in anti-cancer immunity. Relapse of acute myeloid leukemia (AML) following allogeneic stem cell transplantation (alloSCT) has recently been linked to MHC class II silencing in leukemic blasts; however, the regulation of MHC class II expression remains incompletely understood. Utilizing unbiased CRISPR-Cas9 screens, we identify that the C-terminal binding protein (CtBP) complex transcriptionally represses MHC class II pathway genes, while the E3 ubiquitin ligase complex component FBXO11 mediates degradation of CIITA, the principal transcription factor regulating MHC class II expression. Targeting these repressive mechanisms selectively induces MHC class II upregulation across a range of AML cell lines. Functionally, MHC class II+ leukemic blasts stimulate antigen-dependent CD4+ T cell activation and potent anti-tumor immune responses, providing fundamental insights into the graft-versus-leukemia effect. These findings establish the rationale for therapeutic strategies aimed at restoring tumor-specific MHC class II expression to salvage AML relapse post-alloSCT and also potentially to enhance immunotherapy outcomes in non-myeloid malignancies.