Single cell gene expression profile of peripheral whole blood cells from long COVID patients
Ontology highlight
ABSTRACT: In the post COVID-19 pandemic era, long COVID has emerged as a serious health concern. We generated single-cell RNA sequencing (scRNA-seq) data of peripheral whole blood cells from 18 patients involved in clinical trial studying the effectiveness of comercially available herbal medications in long COVID.
Project description:The objective of the study was to characterize the immunoreactivity profiles of IgG-reactive epitopes in COVID-19 patients with distinct disease trajectories as well as SARS-CoV-2-naïve sera, using a high-density SARS-CoV-2 whole proteome peptide microarray. The microarray comprised of a total of 5347 individual peptides, each consisting of 15 amino acids with an overlap of 13 amino acids printed in duplicate. The microarray also had a panel of the most relevant mutations from SARS-CoV-2 variants of concern like omicron, alpha, beta, gamma, delta, and others. This study consisted of 29 participants, including 10 naïve controls (5 pre-pandemic and 5 SARS-CoV-2 seronegative) and 19 RT-PCR-confirmed COVID-19 patients. The COVID-19 patients were stratified into two distinct cohorts based on their disease trajectories: the severe cohort (S), in which the patients presented moderate COVID-19 symptoms initially but eventually progressed toward severity; and the recovered cohort (R), in which severe COVID-19 patients progressed toward recovery. Our findings contribute to a deeper understanding of the immunopathogenesis of COVID-19 in patients with different disease trajectories, the effect of mutations on immunoreactivity, and potential cross-reactivity due to exposure to common cold viruses.
Project description:The on-going COVID-19 pandemic requires a deeper understanding of the long-term antibody responses that persist following SARS-CoV-2 infection. To that end, we determined epitope-specific IgG antibody responses in COVID-19 convalescent sera collected at 5 months post-diagnosis and compared that to sera from naïve individuals. Each serum sample was reacted with a high-density peptide microarray representing the complete proteome of SARS-CoV-2 as 15 mer peptides with 11 amino acid overlap and homologs of spike glycoprotein, nucleoprotein, membrane protein, and envelope small membrane protein from related human coronaviruses. Binding signatures were compared between COVID-19 convalescent patients and naïve individuals using the web service tool EPIphany.
Project description:Background: During gestation, stressors to the fetus, including viral exposure or maternal psychological distress, can fundamentally alter the neonatal epigenome, and may be associated with long-term impaired developmental outcomes. The impact of in utero exposure to the COVID-19 pandemic on the newborn epigenome has yet to be described. Methods: This study aimed to determine whether there are unique epigenetic signatures in newborns who experienced otherwise healthy pregnancies that occurred during the COVID-19 pandemic (Project RESCUE). The pre-pandemic control and pandemic cohorts (Project RESCUE) included in this study are part of a prospective observational and longitudinal cohort study that evaluates the impact of elevated prenatal maternal stress during the COVID-19 pandemic on early childhood neurodevelopment. Using buccal swabs collected at birth, differential DNA methylation analysis was performed using the Infinium MethylationEPIC arrays and linear regression analysis. Pathway analysis and gene ontology enrichment were performed on resultant gene lists. Results: Widespread differential methylation was found between neonates exposed in utero to the pandemic and pre-pandemic neonates. In contrast, there were no apparent epigenetic differences associated with maternal COVID-19 infection during pregnancy. Differential methylation was observed among genomic sites that underpin important neurological pathways that have been previously reported in the literature to be differentially methylated because of prenatal stress, such as NR3C1. Conclusions: The present study reveals that the onset and continuation of the COVID-19 pandemic has fundamentally altered the epigenomes of newborns born during this time, even in otherwise healthy pregnancies, which should be considered in current and future epigenetic studies and may act as a critical biomarker of stress.
Project description:The spread of SARS-CoV-2 has fuelled the COVID-19 pandemic with its enduring medical and socioeconomic challenges due to subsequent waves and long-term consequences of great concern. Here we chart the molecular basis of COVID-19 pathogenesis, by analysing patients’ immune response at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproduct (RAGE) pathway in monocytes.
Project description:Lifespan Cancer Institute serves over 50% of cancer patients in the state. Rhode Island is known for strong medical care and high rates of cancer screening with mammography and colonoscopy. However, cancer screening has plummeted during the COVID-19 pandemic, in part to closing physician offices and stopping non-urgent medical procedures. In addition, anecdotal reports suggest the public remains concerned about returning to physician’s offices and risking possible exposure to COVID-19. As in the United States as a whole, COVID-19 has disproportionately impacted ethnic and minority individuals within underserved communities; and in Rhode Island, African Americans, Hispanics and undocumented individuals living in communities such as Central Falls, Pawtucket, Providence, East Providence and North Providence have had the highest rate of COVID-19. These communities are also impacted by healthcare disparities to access and affordability of healthcare, and as such, may be among the least likely to resume cancer screening.
The Lifespan Cancer Institute will institute a project to address health disparities in cancer screening during the pandemic through the use of a targeted campaign involving social media. The goals will be to re-establish screening in the era of COVID-19 and ensure timeliness of care for those found to be at risk, or are positive for, cancer.
Project description:The coronavirus pandemic (COVID-19) is associated with secondary bacterial and fungal infections globally. In India, inappropriate use of glucocorticoids, high prevalence of diabetes mellitus and a conducive environment for fungal growth are considered as the main factors for increased incidence of COVID-19 associated mucormycosis (CAM). Few cases of CAM without steroid abuse and normal blood glucose levels were also reported during the pandemic. This study was designed to explore whether altered immune responses due to severe COVID-19 infection predisposes towards development of mucormycosis. The global transcriptome profiling of monocytes and granulocytic cells derived from CAM, Mucormycosis, COVID-19 and healthy control groups were performed to identify the differentially expressed genes (DEGs) involved in dysregulated host immune response towards respective diseased and healthy conditions.
Project description:A multicenter Italian retrospective study on COVID-19 pandemic condition and advanced Gastro - Intestinal Cancer.
Are in Italy increased the new diagnosis of GI cancer in advanced stage in the 2020 compared with 2019, as a consequence of COVID-19?
Project description:Objective: Coronavirus disease 2019 (COVID-19) is a pandemic respiratory illness spreading from person-to-person caused by a novel coronavirus and poses a serious public health risk. The goal of this study was to apply a modified susceptible-exposed-infectious-recovered (SEIR) compartmental mathematical model for prediction of COVID-19 epidemic dynamics incorporating pathogen in the environment and interventions. The next generation matrix approach was used to determine the basic reproduction number R0. The model equations are solved numerically using fourth and ffth order Runge–Kutta methods. Results: We found an R0 of 2.03, implying that the pandemic will persist in the human population in the absence of strong control measures. Results after simulating various scenarios indicate that disregarding social distancing and hygiene measures can have devastating effects on the human population. The model shows that quarantine of contacts and isolation of cases can help halt the spread on novel coronavirus.
Project description:The current SARS-CoV-2/COVID-19 pandemic causes medical and socioeconomic havoc. Despite the availability of vaccines, cost-effective treatment options preventing morbidity and mortality are urgently needed. To identify affordable, ubiquitously available, and effective treatments, we tested herbs consumed worldwide as herbal teas regarding their antiviral activity against SARS-CoV-2. Aqueous infusions prepared by boiling leaves of the Lamiaceae perilla and sage elicit potent and sustained antiviral activity against SARS-CoV-2 in therapeutic as well as prophylactic regimens. The herbal infusions exerted antiviral effects comparable to interferon-β and remdesivir but outperformed convalescent sera and interferon-α2 upon short-term treatment early after infection. Based on protein fractionation analyses, we identified caffeic acid, perilla aldehyde, and perilla alcohol as antiviral compounds. Global mass-spectrometry (MS) analyses performed comparatively in two different infection models (Vero E6 and Caco-2 cell lines) revealed changes of the proteome upon treatment with herbal infusions and provided insights into the mode of action. As inferred by the MS data, induction of heme oxygenase 1 (HMOX-1) was confirmed as effector mechanism by the antiviral activity of HMOX-1-inducing compounds sulforaphane and fraxetin. In conclusion, herbal teas based on perilla and sage exhibit antiviral activity against SARS-CoV-2 including the variants of concern Alpha, Beta, Delta, and Omicron.
Project description:10X VisiumHD spatial transcriptomics of epipharynx from three patients with long COVID and two control individuals without COVID-19.