Project description:This laboratory studies the role of carbohydrates in the development of the central nervous system. Comparison of glycosyltransferase gene expression in developing rodent cerebellum with the aim of understanding the regulation of tissue-specific glycans RNA from adult and postnatal day 7 BALB/c mouse cerebellum was extracted and analyzed for differences in glycosyltransferase expression. Three replicate samples were processed for each age group and hybridized to the GLYCOv2 array.
Project description:The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional "imprint" consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior-posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhartbrainmapnimhgrant.org). Keywords: multiple strain, multiple tissues
Project description:With improved whole-cell isolation protocols, we performed single-cell RNA sequencing (scRNA-seq) and profiled the transcriptomes from adult non-human primate brain. We identified discriminative cell populations with canonical and novel markers. Cross-species projection demonstrated the evolutionary conservation among mouse, monkey, and human. This dataset serves as a detailed transcriptomic atlas for understanding the adult primate central nervous system.
Project description:Flaviviruses, particularly Japanese encephalitis virus (JEV) and West Nile virus (WNV), are important causes of virus-induced central nervous system (CNS) disease in humans. We used microarray analysis to identify cellular genes that are differentially regulated following infection of the brain with JEV (P3) or WNV (New York 99). Gene expression data for these flaviviruses was compared to that induced following infection of the brain with reovirus (Type 3 Dearing), an unrelated neurotropic virus. Although several studies have described gene expression changes following virus infection of the brain, this report is the first to directly compare large-scale gene expression data from different viruses. We found that a large number of genes were up-regulated in common to infections with all 3 viruses (fold change > 2, P < 0.001), including genes associated with interferon signaling, the immune system, inflammation and cell death/survival signaling. In addition, genes associated with glutamate signaling were down-regulated in common to infections with all 3 viruses (fold change > 2, P < 0.001). These genes may serve broad spectrum therapeutic targets for virus-induced CNS disease. A distinct set of genes were up-regulated following flavivirus-infection, but not following infection with reovirus. These genes were associated with tRNA charging and may serve as therapeutic targets for flavivirus-induce CNS disease. Gene expression in the brain following WNV or JEV infection. WNV- or JEV-infected (N=3) vs. mock-infected (N=3) mouse brain.
Project description:Identification of fungal species present in the central nervous system tissue from Alzheimer's disease patients by next-generation sequencing.
Project description:Herpes simplex virus type 2 (HSV-2) is a common human pathogen that establishes lifelong latency in neurons of the nervous system. The number of severe central nervous system infections caused by the virus has increased recently. However, the pathogenesis of HSV-2 infection in the nervous system is not fully understood. Here, we demonstrated global proteomic changes in the brain tissue in BALB/c mice vaginally infected with HSV-2.
Project description:Flaviviruses, particularly Japanese encephalitis virus (JEV) and West Nile virus (WNV), are important causes of virus-induced central nervous system (CNS) disease in humans. We used microarray analysis to identify cellular genes that are differentially regulated following infection of the brain with JEV (P3) or WNV (New York 99). Gene expression data for these flaviviruses was compared to that induced following infection of the brain with reovirus (Type 3 Dearing), an unrelated neurotropic virus. Although several studies have described gene expression changes following virus infection of the brain, this report is the first to directly compare large-scale gene expression data from different viruses. We found that a large number of genes were up-regulated in common to infections with all 3 viruses (fold change > 2, P < 0.001), including genes associated with interferon signaling, the immune system, inflammation and cell death/survival signaling. In addition, genes associated with glutamate signaling were down-regulated in common to infections with all 3 viruses (fold change > 2, P < 0.001). These genes may serve broad spectrum therapeutic targets for virus-induced CNS disease. A distinct set of genes were up-regulated following flavivirus-infection, but not following infection with reovirus. These genes were associated with tRNA charging and may serve as therapeutic targets for flavivirus-induce CNS disease.
Project description:For its remarkable ability to heal injuries of the adult central nervous system, the zebrafish has become an important model to investigate neural regeneration. Despite big progresses in our understanding of some of the underlying key processes, a comprehensive analysis of the changes of the transcriptome has not been reported yet. We analysed here the transcriptome of the regenerating telencephalon for changes in the expression of microRNAs and their putative targets.
Project description:Blood-brain barrier (BBB) critically regulate the homeostasis of central nervous system (CNS). This barrier property allows cerebral vessels to meet the extremely high metabolic demand of neural activities and meanwhile protect sensitive neurons from toxic plasma components, blood immune cells and xenobiotics. Therefore, a comprehensive inventory of the molecular determinants of BBB would substantially facilitate understanding of the pathogenesis of neurological disorders involving BBB dysfunction and promote development of novel CNS drug delivery strategies. Here, we established the proteome activity landscapes of adult mouse brain, lung and liver ECs. In this study, we produced a comprehensive molecular atlas of adult mouse BBB and revealed novel insights into adult BBB in health and Alzheimer’s disease.