Project description:This SuperSeries is composed of the following subset Series: GSE27405: Transcriptional response of an azole-resistant Candida parapsilosis isolate [fluconazole]. GSE27407: Transcriptional response of an azole-resistant Candida parapsilosis isolate [posaconazole]. GSE27408: Transcriptional response of an azole-resistant Candida parapsilosis isolate [voriconazole]. Refer to individual Series
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of fluconazole. Whole genome microarrays were used to compare the transcriptional response of the fluconazole-resistant and susceptible isolates.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of voriconazole. Whole genome microarrays were used to compare the transcriptional response of the voriconizole-resistant and susceptible isolates.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of posaconazole. Whole genome microarrays were used to compare the transcriptional response of the posaconazole-resistant and susceptible isolates.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of voriconazole. Whole genome microarrays were used to compare the transcriptional response of the voriconizole-resistant and susceptible isolates. Transcriptional profile of an in vitro derived voriconazole-resistant isolate of C. parapsilosis (BC014VRC) compared to the susceptible isolate (BC014S). Cell were grown in YPD medium in normoxia at 35 degrees. Each strain was labelled with Cy3 or Cy5. Overall, 4 independent biological replicates were compared; 2 dye swaps were performed to normalize dye effects.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of fluconazole. Whole genome microarrays were used to compare the transcriptional response of the fluconazole-resistant and susceptible isolates. Transcriptional profile of in vitro derived fluconazole resistant isolate of C. parapsilosis (BC014FLC) compared to susceptible isolate (BC014S). Cell were grown in YPD medium in normoxia at 35 degrees. Each strain was labelled with Cy3 or Cy5. Overall, 4 independent biological replicates were compared; 2 dye swaps were performed to normalize dye effects.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of posaconazole. Whole genome microarrays were used to compare the transcriptional response of the posaconazole-resistant and susceptible isolates. Transcriptional profile of an in vitro derived posaconazole-resistant isolate of C. parapsilosis (BC014PSC) compared to the susceptible isolate (BC014S). Cell were grown in YPD medium in normoxia at 35 degrees. Each strain was labelled with Cy3 or Cy5. Overall, 3 independent biological replicates were compared; 1 dye swap was performed to normalize dye effects.
Project description:Herein we describe the changes in the gene expression profile of Candida parapsilosis associated with the acquisition of experimentally induced resistance to azole antifungal drugs. Three resistant strains of C. parapsilosis were obtained following prolonged in vitro exposure of a susceptible clinical isolate to constant concentrations of fluconazole, voriconazole, or posaconazole. We found that after incubation with fluconazole or voriconazole, strains became resistant to both azoles but not to posaconazole, although susceptibility to this azole decreased, whereas the strain incubated with posaconazole displayed resistance to the three azoles. The resistant strains obtained after exposure to fluconazole and to voriconazole have increased expression of the transcription factor MRR1, the major facilitator transporter MDR1, and several reductases and oxidoreductases. Interestingly, and similarly to what has been described in C. albicans, upregulation of MRR1 and MDR1 is correlated with point mutations in MRR1 in the resistant strains. The resistant strain obtained after exposure to posaconazole shows upregulation of two transcription factors (UPC2 and NDT80) and increased expression of 13 genes involved in ergosterol biosynthesis. This is the first study addressing global molecular mechanisms underlying azole resistance in C. parapsilosis; the results suggest that similarly to C. albicans, tolerance to azoles involves the activation of efflux pumps and/or increased ergosterol synthesis.
Project description:Two isolates of Candida glabrata, one susceptible and one resistant to azole antifungals, were previously shown to differ in quantity and activity of the cytochrome P-450 14alpha-lanosterol demethylase which is the target for azole antifungals. The resistant isolate also had a lower intracellular level of fluconazole, but not of ketoconazole or itraconazole, than the susceptible isolate. In the present study a 3.7-fold increase in the copy number of the CYP51 gene, encoding the 14alpha-lanosterol demethylase, was found. The amount of CYP51 mRNA transcript in the resistant isolate was eight times greater than it was in the susceptible isolate. Hybridization experiments on chromosomal blots indicated that this increase in copy number was due to duplication of the entire chromosome containing the CYP51 gene. The phenotypic instability of the resistant isolate was demonstrated genotypically: a gradual loss of the duplicated chromosome was seen in successive subcultures of the isolate in fluconazole-free medium and correlated with reversion to susceptibility. The greater abundance of the amplified chromosome induced pronounced differences in the protein patterns of the susceptible and revertant isolates versus that of the resistant isolate, as demonstrated by two-dimensional gel electrophoresis (2D-GE). Densitometry of the 2D-GE product indicated upregulation of at least 25 proteins and downregulation of at least 76 proteins in the resistant isolate.