Project description:Mesenchymal stem cells (MSCs)-derived exosomes (exo) have shown comprehensive application prospects over the years. Despite similar functions, exomes from different origins present heterogeneous characteristics and components; however, there are no relevant proteomic analyses. In this study, we isolated exosomes from MSCs, derived from different tissues, by ultracentrifugation. A total of 1014 proteins were detected using a label-free method and analyzed with bioinformatics tools. The results revealed their shared function in the extracellular matrix receptor. Bone marrow-MSCs-derived exosomes showed superior regeneration ability. Likewise, adipose tissue-MSCs-derived exosomes played a significant role in immune regulation. Whereas, umbilical cord-MSCs-derived exosomes were more prominent in tissue damage repair.
Project description:Exosomes derived from mesenchymal stem cells (MSCs) have shown to have effective application prospects in the medical field, but exosome yield is very low. The production of exosome mimetic vesicles (EMVs) by continuous cell extrusion leads to more EMVs than exosomes, but whether the protein compositions of MSC-derived EMVs (MSC-EMVs) and exosomes (MSC-exosomes) are substantially different remains unknown. The purpose of this study was to conduct a comprehensive proteomic analysis of MSC-EMVs and MSC-exosomes and to simply explore the effects of exosomes and EMVs on wound healing ability. This study provides a theoretical basis for the application of EMVs and exosomes.In this study, EMVs from human umbilical cord MSCs (hUC MSCs) were isolated by continuous extrusion, and exosomes were identified after hUC MSC ultracentrifugation. A proteomic analysis was performed, and 2,315 proteins were identified. The effects of EMVs and exosomes on the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by cell counting kit-8, scratch wound, Transwell and tubule formation assays. A mouse mode was used to evaluate the effects of EMVs and exosomes on wound healing . Bioinformatics analyses revealed that 1,669 proteins in both hUC MSC-EMVs and hUC MSC-exosomes play roles in retrograde vesicle-mediated transport and vesicle budding from the membrane. The 382 proteins unique to exosomes participate in extracellular matrix organization and extracellular structural organization, and the 264 proteins unique to EMVs target the cell membrane. EMVs and exosomes can promote wound healing and angiogenesis in mice and promote the proliferation, migration and angiogenesis of HUVECs.
Project description:screening of signature deterimes the individual variations in the therapeutic efficacy of human umbilical cord blood-derived mesenchymal stem cells There is paucity of information whether human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) from separate donors might have different effects on improving myocardial repair after myocardial infarction (MI).
Project description:Application of umbilical cord mesenchymal stem cell-derived conditioned media (HUCMSC-CM) to treat severe, progressive PAH. Serial infusions of HUCMSC-CM resulted in marked clinical and hemodynamic improvement after 6 months, and showed no adverse events. Differential expression analysis between conditioned media and cells was used to identify molecular processes with a putative role in treatment benefit.
Project description:screening of signature deterimes the individual variations in the therapeutic efficacy of human umbilical cord blood-derived mesenchymal stem cells There is paucity of information whether human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) from separate donors might have different effects on improving myocardial repair after myocardial infarction (MI). We screened cell surface genes by the comparing the cells that showed the best and worst efficacy, respectively, in repairing the infarcted myocardium of rats.
Project description:Restenosis is an inescapable problem when patients underwent percutaneous transluminal angioplasty because of intimal hyperplasia. Human umbilical cord mesenchymal stem cells derived exosomes (HucMSC-Exo) have been proved to promote reendothelialization to restrain the process of intimal hyperplasia. However, aberrant vascular smooth muscle cell (VSMC) proliferation, migration and dedifferentiation play more important roles in intimal hyperplasia, the effects and mechanisms of HucMSC-Exo upon VSMC are elusive