Project description:Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. In Saccharomyces cerevisiae, it is controlled by a reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes. Many of these enzymes are extensively phosphorylated in vivo; however, the functions of specific phosphosites are poorly understood. Here, we comprehensively investigate the phosphoregulation of the yeast histone methylation network by analysing 40 phosphosites on six enzymes through mutagenesis. A total of 82 genomically-edited S. cerevisiae strains were generated and screened for changes in native H3K4, H3K36, and H3K79 methylation levels, and for sensitivity to environmental stress conditions. This demonstrated the functional relevance of phosphosites on methyltransferase Set2p (S6, S8, S10, and T127) and demethylase Jhd1p (S44) in the regulation of H3K36 methylation in vivo, and in the coordination of specific stress response pathways in budding yeast. Proteomic analysis of SET2 mutants revealed that phosphorylation site mutations lead to significant downregulation of membrane-associated proteins and processes, consistent with changes brought about by SET2 deletion. This study represents the first systematic investigation into the phosphoregulation of an entire epigenetic network in any eukaryote, and our findings establish phosphorylation as an important regulator of histone lysine methylation in S. cerevisiae.
Project description:Nuclear receptor-binding SET domain protein 1 (NSD1) prototype is a family of mammalian histone methyltransferases (NSD1, NSD2/MMSET/WHSC1, NSD3/WHSC1L1) that are essential in development and are mutated in human acute myeloid leukemia (AML), overgrowth syndromes, multiple myeloma and lung cancers. In AML, the recurring t(5;11)(q35;p15.5) translocation fuses NSD1 to nucleoporin-98 (NUP98). Here, we present the first characterization of the transforming properties and molecular mechanisms of NUP98-NSD1. We demonstrate that NUP98-NSD1 induces AML in vivo, sustains self-renewal of myeloid stem cells in vitro, and enforces expression of the HoxA7, HoxA9, HoxA10 and Meis1 proto-oncogenes. Mechanistically, NUP98-NSD1 binds genomic elements adjacent to HoxA7 and HoxA9, maintains histone H3 Lys 36 (H3K36) methylation and histone acetylation, and prevents EZH2-mediated transcriptional repression of the Hox-A locus during differentiation. Deletion of the NUP98 FG-repeat domain, or mutations in NSD1 that inactivate the H3K36 methyltransferase activity or that prevent binding of NUP98-NSD1 to the Hox-A locus precluded both Hox-A gene activation and myeloid progenitor immortalization. We propose that NUP98-NSD1 prevents EZH2-mediated repression of Hox-A locus genes by colocalizing H3K36 methylation and histone acetylation at regulatory DNA elements. This report is the first to link deregulated H3K36 methylation to tumorigenesis and to link NSD1 to transcriptional regulation of the Hox-A locus. Keywords: expression analysis
Project description:We characterized the role of H3K36 methylation in regulating repair of UV damage from the transcribed strand (TS) of yeast genes by the transcription coupled nucleotide excision repair (TC-NER) pathway. TC-NER is triggered when RNA polymerase stalls at UV damage, such as a UV-induced cyclobutane pyrimidine dimer (CPD). During transcription, the histone methyltransferase Set2 methylates histone H3K36, but it is not known if H3K36 methylation regulates TC-NER. Here, we report genome-wide repair maps of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast cells containing mutants in histone H3K36 (or set2).
Project description:Nuclear receptor-binding SET domain protein 1 (NSD1) prototype is a family of mammalian histone methyltransferases (NSD1, NSD2/MMSET/WHSC1, NSD3/WHSC1L1) that are essential in development and are mutated in human acute myeloid leukemia (AML), overgrowth syndromes, multiple myeloma and lung cancers. In AML, the recurring t(5;11)(q35;p15.5) translocation fuses NSD1 to nucleoporin-98 (NUP98). Here, we present the first characterization of the transforming properties and molecular mechanisms of NUP98-NSD1. We demonstrate that NUP98-NSD1 induces AML in vivo, sustains self-renewal of myeloid stem cells in vitro, and enforces expression of the HoxA7, HoxA9, HoxA10 and Meis1 proto-oncogenes. Mechanistically, NUP98-NSD1 binds genomic elements adjacent to HoxA7 and HoxA9, maintains histone H3 Lys 36 (H3K36) methylation and histone acetylation, and prevents EZH2-mediated transcriptional repression of the Hox-A locus during differentiation. Deletion of the NUP98 FG-repeat domain, or mutations in NSD1 that inactivate the H3K36 methyltransferase activity or that prevent binding of NUP98-NSD1 to the Hox-A locus precluded both Hox-A gene activation and myeloid progenitor immortalization. We propose that NUP98-NSD1 prevents EZH2-mediated repression of Hox-A locus genes by colocalizing H3K36 methylation and histone acetylation at regulatory DNA elements. This report is the first to link deregulated H3K36 methylation to tumorigenesis and to link NSD1 to transcriptional regulation of the Hox-A locus. Experiment Overall Design: Total RNA was extracted from stably transformed progenitors cultured in vitro and the expression levels of mRNA transcripts quantified using the Affymetrix GeneChip Mouse Genome 430 2.0 array, as previously described. The GEO database accession numbers: for progenitors immortalized by HoxA9 (GSM190542, GSM190546, GSM190547); for progenitors immortalized by coexpressed HoxA9 plus Meis1 (GSM190548, GSM190549, GSM190550); for progenitors immortalized by NUP98-NSD1 (GSM190551, GSM190552, GSM190553); and for progenitors immortalized by MLL-ENL (GSM190554). Experiment Overall Design: NOTE: CEL files and dChip data were requested by GEO but not provided.
Project description:Histone tails are post-translationally modified at multiple sites, including Lys36 on histone H3 (H3K36). The H3K36 methylation has been shown to associate with the transcription of active euchromatin, alternative splicing, DNA repair and recombination. However, the role of H3K36 methylation during cell differentiation is still obscure.Previous investigations found that a site specific Lys-to-Met mutation on histones can serve as an inhibitor of this site specific methyltransferases to repress global methylation on that lysine of histones. In this study we usedH3K36 Lys-to-Met mutant (H3K36M) as a tool to investigaterole of H3K36 methylation in our cell differentiation system. Expression of H3K36M repressed global H3K36 methylation but increased H3K27me3 as previously reported. On our cell differentiation system, H3K36M suppressed adipogenesis and myogenesis. Our pioneer RNA-seqstudy further showed that H3K36M repressed the expression of master regulator genes. Here, we did ChIP-seq of several histone modifications to further explore the changes on the epigenome by expression of H3K36M. Interestingly, on some important master regulator genes loci, the repressive marker H3K27me3 increased significantly, correlated with the repression on their expression. The H3K36M decreases global H3K36 di- and tri-methylation. To clarify which H3K36 methyltransferase is important for cell differentiation, we knocked down H3K36 di-methyltransferases Nsd1 and Nsd2, H3K36 tri-methyltransferase Setd2 separately. Nsd2 knockdown, but not Nsd1 or Setd2,can phenocopythe adipogenesis defect in H3K36M expressed cells.Comparing in RNA-seq results, Nsd2 knockdown cells showed similar gene expression profile with H3K36M expressed cells in adipogenesis. These suggest that Nsd2-mediated H3K36me2 plays an important role in adipogenesis.To study the role of H3K36 methylation in vivo, we generated an aP2 promoter driven H3K36M expressed transgenic mouse (Tg), to express H3K36M specifically in adipose tissue. The Tg mice showedsignificant dysfunction in both white and brown adipose tissues. Their fat tissues gene expression profile changed significantly. All of these indicate that H3K36 methylation is important for adipose tissue developmentin vivo.Together, our comprehensive studies provide novel insights into dynamics of H3K36 methylation and its important role in transcriptional regulation of cell differentiation and mouse fat tissue development.
Project description:Set2 co-transcriptionally methylates lysine 36 of histone H3 (H3K36), producing mono-, di-, and trimethylation (H3K36me1/2/3). These modifications recruit or repel chromatin effector proteins important for transcriptional fidelity, mRNA splicing, and DNA repair. However, it was not known whether the different methylation states of H3K36 have distinct biological functions. Here, we use engineered forms of Set2 that produce different lysine methylation states to identify unique and shared functions for H3K36 modifications. Although H3K36me1/2 and H3K36me3 are functionally redundant in many SET2 deletion phenotypes, we found that H3K36me3 has a unique function related to Bur1 kinase activity and FACT (facilitates chromatin transcription) complex function. Further, during nutrient stress, either H3K36me1/2 or H3K36me3 represses high levels of histone acetylation and cryptic transcription that arises from within genes. Our findings uncover the potential for the regulation of diverse chromatin functions by different H3K36 methylation states.