Transcriptomics

Dataset Information

0

Astrocytic EphA4 signaling is important for the elimination of excitatory synapses in Alzheimer’s disease


ABSTRACT: Cell surface receptors, including erythropoietin-producing hepatocellular A4 (EphA4), are important in regulating hippocampal synapse loss, which is the key driver of memory decline in Alzheimer’s disease (AD). However, the cellular-specific roles and mechanisms of EphA4 are unclear. Here, we show that EphA4 expression is elevated in hippocampal CA1 astrocytes in AD conditions. Specific knockout of astrocytic EphA4 ameliorates excitatory synapse loss in the hippocampus in AD transgenic mouse models. Single-nucleus RNA sequencing analysis revealed that EphA4 inhibition specifically decreases a reactive astrocyte subpopulation with enriched complement signaling, which are characteristics associated with synapse elimination by astrocytes in AD. Importantly, astrocytic EphA4 knockout in an AD transgenic mouse model decreases complement tagging on excitatory synapses and excitatory synapses within astrocytes. These findings suggest an important role of EphA4 in the astrocyte-mediated elimination of excitatory synapses in AD and highlight the crucial role of astrocytes in hippocampal synapse maintenance in AD.

ORGANISM(S): Mus musculus

PROVIDER: GSE284797 | GEO | 2024/12/29

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2021-11-03 | MSV000088313 | MassIVE
| PRJNA1203656 | ENA
2020-12-14 | GSE161540 | GEO
2019-08-26 | GSE122176 | GEO
2024-03-19 | GSE255050 | GEO
2023-08-22 | GSE234945 | GEO
2018-01-16 | GSE107317 | GEO
2024-09-17 | GSE245823 | GEO
2024-10-17 | PXD046784 | Pride
2016-01-13 | E-GEOD-76805 | biostudies-arrayexpress