Project description:Comparison of undifferentiated C2C12 myoblast to 4 day differentiated myotubes. Experiment Overall Design: this experiment include 2 samples and 6 replicates
Project description:In urodele amphibians, limb regeneration involves the dedifferentiation of muscle myotubes into single cells that may acquire pluripotent potential. We have employed small molecules (myoseverin and BIO) to attempt to reproduce this behavior in mammalian muscle culture. C2C12 myotubes derived from the C2C12 myoblast cell line were induced to undergo cellularization by myoseverin treatment, which destabilizes tubulin filaments. The GSK-3 inhibitor, BIO, was then used to induce dedifferentiation. Induce neuron formation; the cells were incubated with 250 nM reversine for 48 h, and neural induction media (DMEM/F12 supplemented with N2 (Invitrogen)) and 1.5 uM all-trans retinoic acid for 7 days. C2C12 murine myoblast cell line and 48 h 10 uM BIO treated C2C12 cellulate (derived by 20 M myoseverin treatment for 48 h) C2C12 myoblasts were differentiated into myotubes with 2%horse serum in DMEM for 8 days (from 2-4 d, 10 uM AraC treatment was also used to kill any remaining myoblasts). Next, myotubes were cellularized by 20 uM myoseverin treatment for 48 h. 24 h after myoseverin treatment, myotubes were treated with 10 uM BIO for 2d.
Project description:Maps of genomic regions in proximity to the nuclear lamina were determined in undifferentiated C2C12 myoblasts (MBs) and 6 day differentiated C2C12 myotubes (MTs) using DamID with a Dam-Lamin B1-encoding lentivirus.
Project description:In urodele amphibians, limb regeneration involves the dedifferentiation of muscle myotubes into single cells that may acquire pluripotent potential. We have employed small molecules (myoseverin and BIO) to attempt to reproduce this behavior in mammalian muscle culture. C2C12 myotubes derived from the C2C12 myoblast cell line were induced to undergo cellularization by myoseverin treatment, which destabilizes tubulin filaments. The GSK-3 inhibitor, BIO, was then used to induce dedifferentiation. Induce neuron formation; the cells were incubated with 250 nM reversine for 48 h, and neural induction media (DMEM/F12 supplemented with N2 (Invitrogen)) and 1.5 uM all-trans retinoic acid for 7 days. C2C12 murine myoblast cell line and 48 h 10 uM BIO treated C2C12 cellulate (derived by 20 M myoseverin treatment for 48 h)
Project description:In this study, the C2C12 cell line, a model used to study myogenesis and regeneration, was allowed to differentiate from myoblast precursor cells to myotubes. Cells were harvested at 4 different timepoints to perform gene expression profiling. We identified genes that were up-regulated and down-regulated during the differentiation process.
Project description:In this study, the C2C12 cell line, a model used to study myogenesis and regeneration, was allowed to differentiate from myoblast precursor cells to myotubes. Cells were harvested at 3 different timepoints to perform ChIP-on-Chip of Six1, which is a key muscle regulator. We identified global loci bound by Six1 during skeletal myoblast differentiation. C2C12 Myoblasts were allowed to differentiate into myotubes. Cells at three timepoints were harvested for ChIP-on-Chip, including myoblasts stage, 24h after differentiation and myotubes (96h after differentiation). Myotubes were detached from the undifferentiated myoblast reserve cells using diluted trypsin. 3 independent biological replicates were used for each time point experiment. A microarray set counts 3 arrays (Custom Arrays A, B and C) for a total of approximately 2.9 million probes.
Project description:Identification of product of proteolysis during C2C12 myoblast differentiation using subtiligase N-terminomics. Different cell populations collected during a time-course of differentiation (4 days) were used for N-terminal labeling in a forward degradomics approach (n=2). Day0 population= Myoblasts, Day1 populations= live cells and dead cells, Day4 populations= Myotubes and Reserve cells. Additionally, cleavages events generated by mouse caspase-3 at early stages of differentiation (Day 0 and 1) was evaluated using a reverse degradomics approach on myoblasts and live cells (n=2).
Project description:Transcriptional profiling of mouse myoblast cells comparing control vs. Mybbp1a knockdown. Stable clones of C2C12 cells harboring control or Mybbp1a-targeting shRNA were established and further pooled for analysis. Goal was to determine, based on the effects of Mybbp1a depletion on global gene expression, candidate downstream target genes of Mybbp1a, a putative transcriptional co-repressor.
Project description:Transcriptional profiling of mouse myoblast cells comparing control vs. Mybbp1a knockdown. Stable clones of C2C12 cells harboring control or Mybbp1a-targeting shRNA were established and further pooled for analysis. Goal was to determine, based on the effects of Mybbp1a depletion on global gene expression, candidate downstream target genes of Mybbp1a, a putative transcriptional co-repressor. Two-condition experiment, control vs. Mybbp1a knockdown C2C12 cells (mixed stable clones). Biological replicates: 2.
Project description:This study aimed to observe the effect of gRc on C2C12 myotubes under resting state and DEX treatment to indentify the transcript expression induced by gRc in the C2C12 myotubes.