Project description:How different organs are formed from small sets of undifferentiated precursor cells is a key question in developmental biology. To understand the molecular mechanisms underlying organ specification in plants, we studied the function of the homeotic selector genes APETALA3 (AP3) and PISTILLATA (PI), which control the formation of petals and stamens during Arabidopsis flower development. To this end, we characterized the activities of the transcription factors that AP3 and PI encode throughout flower development by using perturbation assays as well as transcript profiling and genomewide localization studies, in combination with a floral induction system that allows a stage-specific analysis of flower development by genomic technologies. We discovered considerable spatial and temporal differences in the requirement for AP3/PI activity during flower formation and show that they control different sets of genes at distinct phases of flower development. The genomewide identification of target genes revealed that AP3/PI act as bifunctional transcription factors: they activate genes involved in the control of numerous developmental processes required for organogenesis and repress key regulators of carpel formation. Our results imply considerable changes in the composition and topology of the gene network controlled by AP3/PI during the course of flower development. We discuss our results in light of a model for the mechanism underlying sex-determination in seed plants, in which AP3/PI orthologues might act as a switch between the activation of male and the repression of female development.
Project description:This SuperSeries is composed of the following subset Series: GSE38358: Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA (ChIP-Seq) GSE38362: Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA (mRNA) Refer to individual Series
Project description:Characterization of the activities of the transcription factors that AP3 and PI encode throughout flower development using perturbation assays in combination with a floral induction system (FIS) that allows a stage-specific analysis of flower development. The series contains two types of perturbation experiments, static permutations (null alleles pi-1 and ap3-3, respectively) and dynamic perturbations (temperature-sensitive ap3-1 allele).
Project description:Characterization of the activities of the transcription factors that AP3 and PI encode throughout flower development using perturbation assays in combination with a floral induction system (FIS) that allows a stage-specific analysis of flower development. The series contains two types of perturbation experiments, static permutations (null alleles pi-1 and ap3-3, respectively) and dynamic perturbations (temperature-sensitive ap3-1 allele). Two conditions (i.e. genotypes: ap3-3 or pi-1 homozygous in the FIS vs ap3-3 or pi-1 heterozygous in the FIS, respectively / ap3-1 plants vs AP3 plants shifted from 16degrees to 27 degrees ) at three developmental stages each
Project description:Characterization of the activities of the transcription factors that AP3 and PI encode throughout flower development using perturbation and ChIPSeq assays in combination with a floral induction system (FIS) that allows a stage-specific analysis of flower development.
Project description:Characterization of the activities of the transcription factors that AP3 and PI encode throughout flower development using perturbation and ChIPSeq assays in combination with a floral induction system (FIS) that allows a stage-specific analysis of flower development. Examination of genomic regions bound by fully functional AP3-GFP and PI-GFP proteins at approx floral stage 4-5 as compared to a negative control sample
Project description:Changes in homeotic gene expression patterns or in the functions of the encoded proteins are thought to play a prominent role in the evolution of new morphologies. The floral homeotic APETALA3 (AP3) and PISTILLATA (PI) genes encode MADS domain-containing transcription factors required to specify petal and stamen identities in Arabidopsis. We have previously shown that perianth expression of AP3 and PI homologs varies in different groups of angiosperms with diverse floral structures, suggesting that changes in expression may contribute to changing morphology. We have investigated the possibility that changes in the functions of the encoded gene products may also have played a role in the evolution of different floral morphologies. AP3 and PI are members of paralogous gene lineages and share extensive similarity along the length of the protein products. Genes within these lineages encode products with characteristic C-terminal motifs that we show are critical for functional specificity. In particular, the C terminus of AP3 is sufficient to confer AP3 functionality on the heterologous PI protein. Furthermore, we have shown that the evolution of the divergent AP3 C-terminal domain in the core eudicots is correlated with the acquisition of a role in specifying perianth structures. These results suggest that divergence in these sequence motifs has contributed to the evolution of distinct functions for these floral homeotic gene products.
Project description:Molecular variation in genes that regulate development provides insights into the evolutionary processes that shape the diversification of morphogenetic pathways. Intraspecific sequence variation at the APETALA3 and PISTILLATA floral homeotic genes of Arabidopsis thaliana was analyzed to infer the extent and nature of diversity at these regulatory loci. Comparison of AP3 and PI diversity with three previously studied genes revealed several features in the patterning of nucleotide polymorphisms common between Arabidopsis nuclear loci, including an excess of low-frequency nucleotide polymorphisms and significantly elevated levels of intraspecific replacement variation. This pattern suggests that A. thaliana has undergone recent, rapid population expansion and now exists in small, inbred subpopulations. The elevated intraspecific replacement levels may thus represent slightly deleterious polymorphisms that differentiate distinct ecotypes. The distribution of replacement and synonymous changes in AP3 and PI core and noncore functional domains also indicates differences in the patterns of molecular evolution between these interacting floral regulatory genes.
Project description:In Arabidopsis, two floral homeotic genes APETALA2 (AP2) and AGAMOUS (AG) specify the identities of perianth and reproductive organs, respectively, in flower development. The two genes act antagonistically to restrict each other to their proper domains of action within the floral meristem. In addition to AG, which antagonizes AP2, miR172, a microRNA, serves as a negative regulator of AP2. In this study, we showed that AG and miR172 have distinct functions in flower development and that they largely act independently in the negative regulation of AP2. We uncovered functions of miR172-mediated repression of AP2 in the regulation of floral stem cells and in the delineation of the expression domain of another class of floral homeotic genes. Given the antiquity of miR172 in land plants, our findings have implications for the recruitment of a microRNA in the building of a flower in evolution.