Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells
Ontology highlight
ABSTRACT: In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of the TLR3- and UNC-93B-dependent induction of IFN-α/β and/or IFN-λ immunity are prone to HSV-1 encephalitis (HSE) 1-3. The cells responsible for HSE in these children have yet to be identified. We tested the hypothesis that the pathogenesis of HSE involves non hematopoietic central nervous system (CNS)-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were allowed to differentiate into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of IFN-β and/or IFN-λ1 in response to poly(I:C) stimulation was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-λ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. The rescue of UNC-93B-deficient cells with the wild-type UNC93B1 allele demonstrated the genetic defect as the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was further rescued by treatment with exogenous IFN-α/β, but not IFN-λ1. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection, a phenotype rescued by wild-type TLR3. Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3 pathway deficiencies
ORGANISM(S): Homo sapiens
PROVIDER: GSE40593 | GEO | 2012/11/29
SECONDARY ACCESSION(S): PRJNA174359
REPOSITORIES: GEO
ACCESS DATA