Project description:Arsenic is methylated during its metabolism, thereby depleting the intracellular methyl donor S-adenosyl-methionine, which may lead to disturbances in DNA methylation patterns which could lead to altered gene expression Cells were exposed to sodium arsenite (NaAsO2, Sigma) at concentrations of 0.08 µM, 0.4 µM and 2 µM for 1, 2 and 8 weeks.
Project description:Arsenic is methylated during its metabolism, thereby depleting the intracellular methyl donor S-adenosyl-methionine, which may lead to disturbances in DNA methylation patterns Cells were exposed to sodium arsenite (NaAsO2, Sigma) at concentrations of 0.08 M-BM-5M, 0.4 M-BM-5M and 2 M-BM-5M for 1, 2 and 8 weeks. A549 arsenic dose time response study.
Project description:Arsenic is methylated during its metabolism, thereby depleting the intracellular methyl donor S-adenosyl-methionine, which may lead to disturbances in DNA methylation patterns which could lead to altered gene expression Cells were exposed to sodium arsenite (NaAsO2, Sigma) at concentrations of 0.08 M-BM-5M, 0.4 M-BM-5M and 2 M-BM-5M for 1, 2 and 8 weeks.
Project description:Arsenic is methylated during its metabolism, thereby depleting the intracellular methyl donor S-adenosyl-methionine, which may lead to disturbances in DNA methylation patterns which could lead to altered gene expression
Project description:Arsenic is methylated during its metabolism, thereby depleting the intracellular methyl donor S-adenosyl-methionine, which may lead to disturbances in DNA methylation patterns
Project description:ObjectivesSodium arsenite (SA) exposure is toxic to the body. Zingerone (ZNG) is a flavonoid with many biological properties found naturally in honey and plants. This study aimed to determine the effects of ZNG on SA-induced rat lung toxicity.Materials and methodsThirty-five male Sprague rats were divided into Control, SA, ZNG, SA+ZNG25, and SA+ZNG50 groups (n=7). SA 10 mg/kg and ZNG were administered at two doses (25 and 50 mg/kg) (orally, 14 days). Analysis of oxidative stress, inflammation damage, apoptosis damage, and autophagic damage markers in lung tissue were determined by biochemical and histological methods.ResultsThe administration of ZNG reduced oxidative stress by increasing SA-induced decreased antioxidant enzyme activities, increasing Nrf-2, HO-1, and NQO1, and decreasing MDA level. ZNG administration reduced inflammation marker levels. Anti-apoptotic Bcl-2 increased and apoptotic Bax and Caspase-3 decreased with ZNG. ZNG promoted the regression of autophagy by reducing Beclin-1, LC3A, and LC3B levels.ConclusionEvaluating all data showed that SA caused toxic damage to lung tissue by increasing inflammation, apoptosis, autophagy, and oxidant levels, whereas ZNG had a protective effect by reducing this damage.