COUP-TFII regulates human endometrial stromal genes involved in inflammation
Ontology highlight
ABSTRACT: Although the function of COUP-TFII in uterine decidualization has been described in mice, its role in the human uterus remains unknown.To interrogate the role of COUP-TFII in human endometrial function, we utilized a siRNA-mediated loss of function approach in primary human endometrial stromal cells.
Project description:Although the function of COUP-TFII in uterine decidualization has been described in mice, its role in the human uterus remains unknown.To interrogate the role of COUP-TFII in human endometrial function, we utilized a siRNA-mediated loss of function approach in primary human endometrial stromal cells. Primary human endometrial stromal cells (HESCs), coup-TFII siRNA group and control group Two group comparison
Project description:ChickenM-BM- ovalbumin upstream promoter-transcription factor II (COUP-TFII; NR2F2) is an orphan nuclear receptor involved in cell-fate specification, organogenesis, angiogenesis and metabolism. Ablation of COUP-TFII in the mouse uterus causes infertility due to defects in embryo attachment and impaired uterine stromal cell decidualization. Although the function of COUP-TFII in uterine decidualization has been described in mice, its role in the human uterus remains unknown. To better elucidate the mechanisms with which COUP-TFII regulates target gene transcription, genome-wide COUP-TFII binding sites in human endometrial stromal cells (HESC) treated with deciduogenic hormones were identified using ChIP-seq. A total of 16,298 intervals (binding regions) for COUP-TFII were identified compared with the input in HESC chromatin with a very low false discovery rate (0.17%) using a stringent cutoff of p =1x10-10. Distribution of intervals showed that more than half (58.6%) of the COUP-TFII binding sites are located within 10 kb of gene boundaries. 7.5% of total intervals reside within the 10 kb promoter region. A total of 6,077 unique genes were identified to have COUP-TFII binding sites within 10 kb of their gene boundaries. Examination of NR2F2 binding in pooled primary human endometrial stromal cells from 6 healthy women upon decidualization with a hormone cocktail of cAMP, E2 and medroxyprogesterone acetate.
Project description:Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII; NR2F2) is an orphan nuclear receptor involved in cell-fate specification, organogenesis, angiogenesis and metabolism. Ablation of COUP-TFII in the mouse uterus causes infertility due to defects in embryo attachment and impaired uterine stromal cell decidualization. Although the function of COUP-TFII in uterine decidualization has been described in mice, its role in the human uterus remains unknown. To better elucidate the mechanisms with which COUP-TFII regulates target gene transcription, genome-wide COUP-TFII binding sites in human endometrial stromal cells (HESC) treated with deciduogenic hormones were identified using ChIP-seq. A total of 16,298 intervals (binding regions) for COUP-TFII were identified compared with the input in HESC chromatin with a very low false discovery rate (0.17%) using a stringent cutoff of p =1x10-10. Distribution of intervals showed that more than half (58.6%) of the COUP-TFII binding sites are located within 10 kb of gene boundaries. 7.5% of total intervals reside within the 10 kb promoter region. A total of 6,077 unique genes were identified to have COUP-TFII binding sites within 10 kb of their gene boundaries.
Project description:Recent studies demonstrated that metabolic disturbance, such as augmented glycolysis, contributes to fibrosis. The molecular regulation of this metabolic perturbation in fibrosis, however, has been elusive. COUP-TFII (also known as NR2F2) is an important regulator of glucose and lipid metabolism. Its contribution to organ fibrosis is undefined. Here, we found increased COUP-TFII expression in myofibroblasts in human fibrotic kidneys, lungs, kidney organoids, and mouse kidneys after injury. Genetic ablation of COUP-TFII in mice resulted in attenuation of injury-induced kidney fibrosis. A non-biased proteomic study revealed the suppression of fatty acid oxidation and the enhancement of glycolysis pathways in COUP-TFII overexpressing fibroblasts. Overexpression of COUP-TFII in fibroblasts induced augmented glycolysis and production of alpha smooth muscle actin (αSMA) and collagen1. Knockout of COUP-TFII decreased glycolysis and collagen1 levels in fibroblasts. Chip-qPCR revealed the binding of COUP-TFII on the promoter of PGC1α. Overexpression of COUP-TFII reduced the cellular level of PGC1α. Targeting COUP-TFII serves as a novel treatment approach for mitigating fibrosis in chronic kidney disease and potentially fibrosis in other organs.
Project description:Synchrony between embryo competency and uterine receptivity is essential for a successful implantation. Mice with ablation of COUP-TFII in the uterus (PRCre/+;COUP-TFIIflox/flox), exhibit implantation defects and increased ER activity in the luminal epithelium, suggesting the high ER activity may disrupt the window of uterine receptivity. In order to determine if the increased ER activity in PRCre/+;COUP-TFIIflox/flox mutant is the cause of the defective implantation, we inhibited of ER activity in order to rescue the implantation defect in mutant mice. ICI 182,780 (ICI), a pure ER antagonist, was administered to PRCre/+;COUP-TFIIflox/flox mutant and COUP-TFIIflox/flox control mice during receptive period and the number of implantation sites were examined. COUP-TFIIflox/flox control mice treated with oil or ICI showed the normal number of implantation sites. As expected no implantation sites were observed in PRCre/+;COUP-TFIIflox/flox mutant mice treated with oil, consistent with previous observation. However, implantation sites were detected, albeit at a reduced number in comparison to the control in PRCre/+;COUP-TFIIflox/flox mutant mice upon ICI treatment.. ICI treatment was also able to rescue the expression of WNT4 and BMP2, genes important for endometrial decidualization in the PRCre/+;COUP-TFIIflox/flox mutant mice. To ensure the rescue of embryo attachment and decidualization is a consequence of a reduction of estrogen receptor activity with ICI treatment of the mutants, we examined the expression of ER target gene, such as lactoferrin, in PRCre/+;COUP-TFIIflox/flox mutant mice. Having shown that ICI could rescue the implantation and decidualization defects of the PRCre/+;COUP-TFIIflox/flox mutant mice, the ability of ICI treatment to rescue pregnancy in these mice was assayed. While mice were born in COUP-TFIIflox/flox control mice given ICI, no pups were born in the PRCre/+;COUP-TFIIflox/flox mutant mice, with the loss in pregnancy in the PRCre/+;COUP-TFIIflox/flox mutant mice treated with ICI being due to defects in placentation. These results demonstrate that during the peri implantation period, COUP-TFII’s role in regulating embryo attachment and decidualiton is through the reduction of ER activity. However COUP-TFII expression is still required in the post implantation period to facilitate placentation.
Project description:To explore the roles of COUP-TFII during the pathogenesis of endometriosis, the human eutopic stromal cells were transfected with siRNA oligonucleotide against COUP-TFII, and total RNA were harvested and proceeded to microarray analysis.
Project description:Synchrony between embryo competency and uterine receptivity is essential for a successful implantation. Mice with ablation of COUP-TFII in the uterus (PRCre/+;COUP-TFIIflox/flox), exhibit implantation defects and increased ER activity in the luminal epithelium, suggesting the high ER activity may disrupt the window of uterine receptivity. In order to determine if the increased ER activity in PRCre/+;COUP-TFIIflox/flox mutant is the cause of the defective implantation, we inhibited of ER activity in order to rescue the implantation defect in mutant mice. ICI 182,780 (ICI), a pure ER antagonist, was administered to PRCre/+;COUP-TFIIflox/flox mutant and COUP-TFIIflox/flox control mice during receptive period and the number of implantation sites were examined. COUP-TFIIflox/flox control mice treated with oil or ICI showed the normal number of implantation sites. As expected no implantation sites were observed in PRCre/+;COUP-TFIIflox/flox mutant mice treated with oil, consistent with previous observation. However, implantation sites were detected, albeit at a reduced number in comparison to the control in PRCre/+;COUP-TFIIflox/flox mutant mice upon ICI treatment.. ICI treatment was also able to rescue the expression of WNT4 and BMP2, genes important for endometrial decidualization in the PRCre/+;COUP-TFIIflox/flox mutant mice. To ensure the rescue of embryo attachment and decidualization is a consequence of a reduction of estrogen receptor activity with ICI treatment of the mutants, we examined the expression of ER target gene, such as lactoferrin, in PRCre/+;COUP-TFIIflox/flox mutant mice. Having shown that ICI could rescue the implantation and decidualization defects of the PRCre/+;COUP-TFIIflox/flox mutant mice, the ability of ICI treatment to rescue pregnancy in these mice was assayed. While mice were born in COUP-TFIIflox/flox control mice given ICI, no pups were born in the PRCre/+;COUP-TFIIflox/flox mutant mice, with the loss in pregnancy in the PRCre/+;COUP-TFIIflox/flox mutant mice treated with ICI being due to defects in placentation. These results demonstrate that during the peri implantation period, COUP-TFIIâs role in regulating embryo attachment and decidualiton is through the reduction of ER activity. However COUP-TFII expression is still required in the post implantation period to facilitate placentation. Experiment Overall Design: Murine uteri were isolated at 6 hour after oil or ICI 182,780 injection for RNA extraction and hybridization on Affymetrix microarrays. To do this mice were ovariectomized and treated hormones (estrogen and progesterone) to mimic the early pregnant condition.
Project description:Increased COUP-TFII levels are found in human dilated cardiomyopathy as well as in mouse models that develop cardiomyopathy. COUP-TFII overexpression in adult mouse hearts caused ventricular dilation and compromised cardiac functions. To gain insights on COUP-TFII’s effect in hearts, we identified the molecular profile of COUP-TFII overexpressing hearts through microarray analysis. The result may shred light on molecular mechanisms that mediate development of dilated cardiomyopathy.
Project description:The orphan nuclear receptor COUP-TFII is expressed at a low level in adult tissues, but its expression is increased and shown to promote progression of multiple diseases including prostate cancer, heart failure and muscular dystrophy. Suppression of COUP-TFII slows disease progression, making it an intriguing therapeutic target. Here, we identified a potent and specific COUP-TFII inhibitor through high-throughput screening. The inhibitor specifically suppressed COUP-TFII activity to regulate its target genes.
Project description:COUP-TFII plays a critical role in angiogenesis during development. It has also been shown to suppress Notch signaling pathway to confer vein identity. However, the downstream targets and the mechanism mediate COUP-TFII function to regulate these processes remain elusive. To identify the downstream targets and the mechanism by which COUP-TFII regulates agiogenesis and vein specification, we knocked down COUP-TFII in HUVEC cells using COUP-TFII specific siRNA and used microarray analysis to identify downstream targets. Interestingly, we found the expression of many genes in the cell cycle pathway and Notch signaling pathway are significantly altered in the COUP-TFII depleted cells.