Other

Dataset Information

0

Conservation and divergence of regulatory strategies and the origin of tetrapod digits


ABSTRACT: The evolution of tetrapod limbs from fish fins enabled the conquest of land by vertebrates and thus represents a key step in evolution. Despite the use of comparative gene expression analyses, critical aspects of this transformation remain controversial, in particularly the origin of digits. Hoxa and Hoxd genes are essential for the specification of the different limb segments and their functional abrogation leads to large truncations of the appendages. Here we show that the selective transcription of mouse Hoxa genes in proximal and distal limbs is related to a bimodal higher order chromatin structure, similar to that reported for Hoxd genes, thus revealing a generic regulatory strategy implemented by both gene clusters during limb development. We found the same bimodal chromatin architecture in fish embryos, indicating that the regulatory strategy used to pattern tetrapod limbs predates the divergence between fish and tetrapods. However, when assessed in mice, both fish regulatory domains triggered transcription in proximal, rather than distal limb territories, supporting an evolutionary scenario whereby digits arose as true tetrapod novelties through genetic retrofitting of a preexisting bimodal chromatin framework. We discuss the possibility to consider regulatory circuitries, rather than expression patterns, as essential parameters to define evolutionary synapomorphies.

ORGANISM(S): Mus musculus Danio rerio

PROVIDER: GSE47644 | GEO | 2014/01/21

SECONDARY ACCESSION(S): PRJNA207030

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2014-01-21 | E-GEOD-47644 | biostudies-arrayexpress
2011-11-28 | GSE31656 | GEO
2011-11-28 | GSE31658 | GEO
2011-11-28 | GSE31654 | GEO
2024-04-17 | GSE250367 | GEO
2024-04-17 | GSE250368 | GEO
2024-04-17 | GSE250266 | GEO
2024-04-17 | GSE250265 | GEO
2024-04-17 | GSE250264 | GEO
2024-04-17 | GSE250263 | GEO