Slit2/Robo axis is mandatory for neural remodeling in pancreatic cancer.
Ontology highlight
ABSTRACT: Pancreatic Ductal Adenocarcinoma (PDA) is a critical health issue in cancer field with little new therapeutic options. Several evidences support an implication of intra-tumoral microenvironment (stroma) on PDA progression. However, its contribution to the role of neuroplastic changes within pathophysiology and clinical course of PDA, mainly through tumor recurrence and neuropathic pain, remains unknown neglecting a putative therapeutic window. Here, we report that intra-tumoral microenvironment is a mediator of PDA Associated Neural Remodeling (PANR). With laser capture microdissection of stromal/tumoral compartment from human PDA followed by cDNA based microarray analyses we highlighted numerous factors expressed by stromal compartment that could impact on neuroplastic changes; among them, the Slit2/Robo axon guidance pathway. Using co-culture in vitro, we showed that stromal secreted Slit2 increases DRG neurite outgrowth and Schwann cells migration/proliferation by modulating N-Cadherin/β-Catenin signaling. Importantly, Slit2/Robo signaling inhibition disrupts this stromal/neural connection. Finally, we revealed in vivo that Slit2 expression is correlated with neural remodeling within Human and mouse PDA. These results demonstrate the implication of microenvironment, through secretion of axon guidance molecule, in PANR. Furthermore, it provides rationale to investigate the disruption of stromal/neural compartment dialogue by using Slit2/Robo pathway inhibitors for treatment of pancreatic cancer recurrence and associated pain.
ORGANISM(S): Homo sapiens
PROVIDER: GSE50570 | GEO | 2015/07/01
SECONDARY ACCESSION(S): PRJNA217959
REPOSITORIES: GEO
ACCESS DATA