Microarray profiling of PFC, HPC and STR from subjects with schizophrenia, bipolar, MDD or control
Ontology highlight
ABSTRACT: Schizophrenia is a complex psychiatric disorder encompassing a range of symptoms and etiology dependent upon the interaction of genetic and environmental factors. Several risk genes, such as DISC1, have been associated with schizophrenia as well as bipolar disorder (BPD) and major depressive disorder (MDD), consistent with the hypothesis that a shared genetic architecture could contribute to divergent clinical syndromes. The present study compared gene expression profiles across three brain regions in post-mortem tissue from matched subjects with schizophrenia, BPD or MDD and unaffected controls. Post-mortem brain tissue was collected from control subjects and well-matched subjects with schizophrenia, BPD, and MDD (n=19 from each group). RNA was isolated from hippocampus, Brodmann Area 46, and associative striatum and hybridized to U133_Plus2 Affymetrix chips. Data were normalized by RMA, subjected to pairwise comparison followed by Benjamini and Hochberg False Discovery Rate correction (FDR). Samples derived from patients with schizophrenia exhibited many more changes in gene expression across all brain regions than observed in BPD or MDD. Several genes showed changes in both schizophrenia and BPD, though the magnitude of change was usually larger in schizophrenia. Several genes that have variants associated with schizophrenia were found to have altered expression in multiple regions of brains from subjects with schizophrenia. Continued evaluation of circuit-level alterations in gene expression and gene-network relationships may further our understanding of how genetic variants may be influencing biological processes to contribute to psychiatric disease.
ORGANISM(S): Homo sapiens
PROVIDER: GSE53987 | GEO | 2014/01/11
SECONDARY ACCESSION(S): PRJNA234287
REPOSITORIES: GEO
ACCESS DATA