Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution
Ontology highlight
ABSTRACT: Cytosine base modifications 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) are present in mammalian DNA. Here, reduced bisulfite sequencing is developed for quantitatively sequencing 5fC at single-base resolution. This method is then applied with oxidative bisulfite sequencing to gain a map of 5mC, 5hmC and 5fC in mouse embryonic stem cells.
Project description:Cytosine base modifications 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) are present in mammalian DNA. Here, reduced bisulfite sequencing is developed for quantitatively sequencing 5fC at single-base resolution. This method is then applied with oxidative bisulfite sequencing to gain a map of 5mC, 5hmC and 5fC in mouse embryonic stem cells. 12 samples, reduced representation bisulphite treatment: 4 replicates each for bisulphite (BS), oxidative BS (oxBS) and reduced BS (redBS) for the detection of 5mC, 5hmC and 5fC. Mouse (strain B6C) embryonic stem cells.
Project description:Active DNA demethylation in mammals involves TET-mediated oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC). However, genome-wide detection of 5fC at single-base resolution remains challenging. Here we present a bisulfite-free method for the whole-genome analysis of 5fC, based on a selective chemical labeling of 5fC and subsequent C-to-T transition during PCR. Base-resolution 5fC maps reveal limited overlap with 5hmC, with 5fC-marked regions more active than 5hmC-marked ones.
Project description:Active DNA demethylation in mammals involves TET-mediated oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC). However, genome-wide detection of 5fC at single-base resolution remains challenging. Here we present a bisulfite-free method for the whole-genome analysis of 5fC, based on a selective chemical labeling of 5fC and subsequent C-to-T transition during PCR. Base-resolution 5fC maps reveal limited overlap with 5hmC, with 5fC-marked regions more active than 5hmC-marked ones. Utilization of cyclization-enabled C-to-T transition of 5fC (hence “fC-CET”) to obtain genome-wide map of 5fC at single-base resolution WT and TdgKO mES cell lines. Two non-enriched input DNAs (Input: preAI), two AI labeled samples (Input: AI), two pull-down output samples.
Project description:Mapping genome-wide 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) at single-base resolution is important to understand their biological functions. We present a cost-efficient mapping method that combines 5hmC-specific restriction enzyme PvuRts1I with a 5hmC enrichment method. The sensitive method enables detection of low abundant 5hmC sites, providing a more complete 5hmC landscape than available bisulfite-based methods. This method generated the first genome-wide 5fC map at single-base resolution. Parallel analyses revealed that 5hmC and 5fC existed with lower abundance and more dynamically in non-CpG context than in CpG context. In the genic region, distribution of 5hmCpG and 5fCpG differed from 5hmCH and 5fCH (H=A, T, C). 5hmC and 5fC were distributed distinctly at regulatory protein-DNA binding sites, depleted in permissive transcription factor binding sites, and enriched at active and poised enhancers. This sensitive bisulfite-conversion free method can be applied to biological samples with limited starting material or low abundance of cytosine modifications. Sensitive mapping of genome-wide 5-hydroxymethylcytosine and 5-formylcytosine in mouse embryonic stem cell at single-base resolution by combining 5-hydroxymethylcytosine specific restriction enzyme PvuRts1I and 5-hydroxymethylcytosine enrichment method (selective chemical labeling or SEAL)
Project description:5-methylcytosine (5mC), the predominant epigenetic modification on DNA, plays critical roles in mammalian development and is dysregulated in various human pathologies. In mammals, the TET family of dioxygenases can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in a stepwise manner. 5fC and 5caC are selectively recognized and excised by mammalian thymine DNA glycosylase (TDG), and restored to normal cytosine through base excision repair (BER). Once 5mC/5hmC is converted to 5fC and/or 5caC, the modified cytosine is committed to demethylation through BER. Thus 5fC and 5caC most likely mark active demethylation in the mammalian genome. Here we introduce a genome-wide approach to obtain single-base resolution maps of 5fC and 5caC, respectively. We show that, in mouse embryonic stem cells (mESCs), 5fC and 5caC are preferentially generated at highly hypomethylated regions and more active enhancers. Moreover, 5caC-marked regions are characterized by the lowest methylation and highest enhancer activity among all modification sites associated with 5hmC, 5fC and 5caC, and are enriched adjacent to pluripotency transcription factor (TF)-binding motifs. These observations, together with the surprising lack of overlap between 5fC and 5caC sites, highlight a gradient of Tet-mediated 5mC oxidation activity at regulatory elements in tuning epigenetic dynamics11. DNA immunoprecipitation coupled chemical-modification assisted bisulfite sequencing (DIP-CAB-Seq) for Tdg fl/fl and Tdg-/- mESCs
Project description:TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base-resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements.
Project description:TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base-resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements. We report here a chemical labeling method that effectively differentiates 5fC from 5mC, 5hmC, and 5caC in genomic DNA. First, we quantitatively protect endogenous 5hmC with a regular glucose using b-glucosytransferase-catalyzed 5hmC glucosylation. Then, we selectively reduce 5fC with NaBH4 to 5hmC, and chemically label the resulting 5hmC (from 5fC) with an azide-modified glucose. Biotin can be installed subsequently for specific enrichment of 5fC. Our method thereby provides an effective tool of general utility for the genomic localization of 5fC. Here we provide genome-wide profiles of 5hmC, 5fC, and p300 in Tdg fl/fl and Tdg-/- mESCs as well as a 5fC control (Non-NaBH4) and polyA RNA-Seq expression data. Genome-wide profiles of 5hmC and 5fC in mESCs differentiated to embryoid bodies are also included. We also report the development and application of a single-base resolution method for the detection of 5fC in genomic DNA by hydroylamine mediated protection of 5fC from deamination during bisulfite treatment, or 5fC Chemical Assisted Bisulfite Sequencing (fCAB-Seq). We applied this method in parallel with conventional ChIP-Methyl-Seq to H3K4me1 ChIP enriched DNA from Tdg fl/fl and Tdg-/- mice.
Project description:Mapping genome-wide 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) at single-base resolution is important to understand their biological functions. We present a cost-efficient mapping method that combines 5hmC-specific restriction enzyme PvuRts1I with a 5hmC enrichment method. The sensitive method enables detection of low abundant 5hmC sites, providing a more complete 5hmC landscape than available bisulfite-based methods. This method generated the first genome-wide 5fC map at single-base resolution. Parallel analyses revealed that 5hmC and 5fC existed with lower abundance and more dynamically in non-CpG context than in CpG context. In the genic region, distribution of 5hmCpG and 5fCpG differed from 5hmCH and 5fCH (H=A, T, C). 5hmC and 5fC were distributed distinctly at regulatory protein-DNA binding sites, depleted in permissive transcription factor binding sites, and enriched at active and poised enhancers. This sensitive bisulfite-conversion free method can be applied to biological samples with limited starting material or low abundance of cytosine modifications.
Project description:DNA cytosine methylation (5-methylcytosine, 5mC) is a predominant epigenetic modification that plays critical roles in a variety of biological and pathological processes in mammals. In active DNA demethylation, the ten-eleven translocation (TET) dioxygenases can sequentially oxidize 5mC to generate three modified forms of cytosine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Beyond being a demethylation intermediate, recent studies have shown that 5fC has regulatory functions in gene expression and chromatin organization. While some methods have been developed to detect 5fC, genome-wide mapping of 5fC at base resolution are still highly desirable. Herein, we propose a Chemical Labeling Enrichment and Deamination sequencing (CLED-seq) method for detecting 5fC in genomic DNA at single-base resolution. The CLED-seq method utilizes selective labeling and enrichment of 5fC-containing DNA fragments, followed by deamination mediated by A3A and sequencing. In the CLED-seq process, while all C, 5mC, and 5hmC are interpreted as T during sequencing, 5fC is still read as C, enabling the precise detection of 5fC in DNA. Using the proposed CLED-seq method, we accomplished genome-wide mapping of 5fC in mouse embryonic stem cells. The mapping study revealed that promoter regions enriched with 5fC overlapped with H3K4me1, H3K4me3, and H3K27ac marks. These findings suggest a correlation between 5fC marks and active gene expression in mouse embryonic stem cells. In conclusion, CLED-seq is a straightforward, bisulfite-free method that offers a valuable tool for detecting 5fC in genomes at a single-base resolution.
Project description:5-methylcytosine (5mC), the predominant epigenetic modification on DNA, plays critical roles in mammalian development and is dysregulated in various human pathologies. In mammals, the TET family of dioxygenases can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in a stepwise manner. 5fC and 5caC are selectively recognized and excised by mammalian thymine DNA glycosylase (TDG), and restored to normal cytosine through base excision repair (BER). Once 5mC/5hmC is converted to 5fC and/or 5caC, the modified cytosine is committed to demethylation through BER. Thus 5fC and 5caC most likely mark active demethylation in the mammalian genome. Here we introduce a genome-wide approach to obtain single-base resolution maps of 5fC and 5caC, respectively. We show that, in mouse embryonic stem cells (mESCs), 5fC and 5caC are preferentially generated at highly hypomethylated regions and more active enhancers. Moreover, 5caC-marked regions are characterized by the lowest methylation and highest enhancer activity among all modification sites associated with 5hmC, 5fC and 5caC, and are enriched adjacent to pluripotency transcription factor (TF)-binding motifs. These observations, together with the surprising lack of overlap between 5fC and 5caC sites, highlight a gradient of Tet-mediated 5mC oxidation activity at regulatory elements in tuning epigenetic dynamics11.