Transcriptomics

Dataset Information

0

ALKBH3 Knockdown in PC3 prostate cancer cells


ABSTRACT: Background: The oxidative DNA demethylase ALKBH3 targets single-stranded DNA (ssDNA) in order to perform DNA alkylation damage repair. ALKBH3 becomes up-regulated during tumorigenesis and is necessary for proliferation. However, the underlying molecular mechanism remains to be understood. Methods: To further elucidate the function of ALKBH3 in cancer, we performed ChIP-seq to investigate the genomic binding pattern of endogenous ALKBH3 in PC3 prostate cancer cells coupled with microarray experiments to examine the expression effects of ALKBH3 depletion. Results: We demonstrate that ALKBH3 binds to transcription associated locations, such as places of promoter-proximal paused RNA polymerase II and enhancers. Strikingly, ALKBH3 strongly binds to the transcription initiation sites of a small number of highly active gene promoters. These promoters are characterized by high levels of transcriptional regulators, including transcription factors, the Mediator complex, cohesin, histone modifiers and active histone marks. Gene expression analysis showed that ALKBH3 does not directly influence the transcription of its target genes, but its depletion induces an up-regulation of ALKBH3 non-bound inflammatory genes. Conclusions: The genomic binding pattern of ALKBH3 revealed a putative novel hyperactive promoter type. Further, we propose that ALKBH3 is an intrinsic DNA repair protein that suppresses transcription associated DNA damage at highly expressed genes and thereby plays a role to maintain genomic integrity in ALKBH3-overexpressing cancer cells. These results raise the possibility that ALKBH3 may be a potential target for inhibiting cancer progression.

ORGANISM(S): Homo sapiens

PROVIDER: GSE57568 | GEO | 2015/06/05

SECONDARY ACCESSION(S): PRJNA246718

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2015-06-05 | E-GEOD-57568 | biostudies-arrayexpress
2015-06-05 | GSE57591 | GEO
2022-09-21 | GSE213681 | GEO
2024-08-14 | GSE274399 | GEO
| PRJNA448564 | ENA
2020-05-13 | PXD019160 | JPOST Repository
2021-06-14 | PXD024604 | Pride
2015-04-19 | E-GEOD-67941 | biostudies-arrayexpress
2015-04-19 | GSE67941 | GEO
2016-06-08 | PXD004271 | Pride