A regulatory CD9+ B cell subset controls HDM-induced allergic airway inflammation
Ontology highlight
ABSTRACT: Background: A specific subset of regulatory IL-10 producing B cells has been extensively studied in autoimmune and inflammatory pathologies. These cells are able to constrain exacerbated inflammation by inhibiting T cell mediated responses and maturation of antigen presenting cells. In allergic diseases, observations that increase of regulatory B cells is necessary for allergen tolerance suggest that development of allergic asthma would be associated with a defect in the regulatory B cells compartment. Objective: We sought to (i) characterize regulatory IL-10+ regulatory B cell subset in Balb/c mice by microarray and flow cytometry and (ii) investigate their regulatory capacity in vivo in a house dust mite model of allergic asthma. Results: We identified an IL-10 producing B cells subset able to control T cell proliferation in vitro in both control and asthmatic mice. This subset is decreased in allergic mice. IL-10+ Breg cells express high levels of CD9 and upregulate CD70 and CD73 after activation. Expression of CD9 allows identifying more than 50% of Bregs. Interestingly CD9+ B cells inhibit TH2-TH17 allergic airway inflammation in vivo after adoptive transfer in an IL-10 dependent manner. Conclusions: Herein, we demonstrate that induction of allergic asthma dampens the generation of Bregs contributing to exacerbated airway inflammation. We identified a distinct CD9+ Breg-cell population decreased in lung of HDM mice and able to control asthma and allergic airway inflammation by producing IL-10 after adoptive transfer. This study points B cells as an interesting therapeutic target in allergic asthma.
ORGANISM(S): Mus musculus
PROVIDER: GSE57772 | GEO | 2015/03/01
SECONDARY ACCESSION(S): PRJNA248070
REPOSITORIES: GEO
ACCESS DATA