Project description:IL-17A is a pro-inflammatory cytokine that promotes host defense against infections and contributes to the pathogenesis of chronic inflammatory diseases. Dendritic cells (DC) are antigen-presenting cells responsible for adaptive immune responses. Here, we report that IL-17A induces intense remodeling of lipid metabolism in human monocyte-derived DC, as revealed by microarrays analysis. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases. We used microarrays analysis to understand the impact of IL-17A on human monocyte-derived human dendritic cells. We found overexpression of many genes involved in lipid metabolism in IL-17A-treated dendritic cells compared to untreated dendritic cells. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases. RNA was extracted from untreated in vitro-generated DC at day 0 (DC, 4 biological replicates ) or DC cultured for 12 days with IL-17A, in the absence or presence of IFN-g (DC-17 and DC-G17, 5 biological replicates)
Project description:Asthmatics have elevated levels of IL-17A compared to healthy controls. IL-17A is likely to contribute to reduced corticosteroid sensitivity of human airway epithelium. Here, we aimed to investigate the mechanistic underpinnings of this reduced sensitivity in more detail. Differentiated primary human airway epithelial cells (hAECs) were exposed to IL-17A in the absence or presence of dexamethasone. Cells were then collected for RNA sequencing analysis or used for barrier function experiments. Mucus was collected for volume measurement and basal medium for cytokine analysis. 2861 genes were differentially expressed by IL-17A (Padj<0.05), of which the majority was not sensitive to dexamethasone (<50% inhibition). IL-17A did inhibit canonical corticosteroid genes, such as HSD11B2 and FKBP5 (p<0.05). Inflammatory and goblet cell metaplasia markers, cytokine secretion and mucus production were all induced by IL-17A, and these effects were not prevented by dexamethasone. Dexamethasone did reverse IL-17A-stimulated epithelial barrier disruption, and this was associated with gene expression changes related to cilia function and development. We conclude that IL-17A induces function-specific corticosteroid-insensitivity. Whereas inflammatory response genes and mucus production in primary hAECs in response to IL-17A were corticosteroid-insensitive, corticosteroids were able to reverse IL-17A-induced epithelial barrier disruption.
Project description:Psoriatic arthritis is a seronegative polyarticular form of inflammatory arthritis . Genetic analysis implicates a role for both IL-17/23 axis and CD8+ T cells in disease susceptibility. Using RNA-seq we identified differential gene expression between synovial IL-17A+(IFNy+/-) CD8+ T cells compared to IL-17A-IFNy+ CD8+ T cells and IL-17A+CD4+ T cells from the synovial fluid of psoriatic arthritis patients. We find that IL-17A+CD8+ T cells have a transcriptional overlap with IL-17A+CD4+ T cells. Overall we show these IL-17A+ CD8+ T cells have a polyfunctional, pro-inflammatory capacity and are potentially derived from common precursors, shared with IL-17A-CD8+ T cells.
Project description:The goal of this study was to elucidate the effects of inflammation on bone metabolism. As we found IL-17A is induced immediately after bone injury and Il17aâ/â mice showed delayed healing, we analyzed the effects of IL-17A on mesenchymal cells in the repair tissue. Most of the IL-17RA+ cells were PαS cells. We collected these cells and analyzed their response to IL-17A by RNA sequencing. This analysis will provide a mechanistic insight into the mechanism of how IL-17A promote bone formation in the context of bone fracture healing. PαS cells were harvested from the injury tissue of wild-type mice and cultured with or without IL-17A or BMP-2. RNAs were harvested at day 7.
Project description:IL-17A has emerged as a pivotal driver of tissue pathology in many immune-mediated inflammatory diseases. Despite sharing 50% sequence homology and the same signalling pathway, the role of IL-17F remains less clear. RNA sequencing of human IL-17 popualtions isolated using a cytokine capture technique identified clear transcriptional differences in IL-17A and IL-17F producing cells, with IL-17A producing cells showing enrichment for cytokine signaling and IL-17F producing cells showing enrichment for cellular replication.
Project description:IL-17A is a pro-inflammatory cytokine that promotes host defense against infections and contributes to the pathogenesis of chronic inflammatory diseases. Dendritic cells (DC) are antigen-presenting cells responsible for adaptive immune responses. Here, we report that IL-17A induces intense remodeling of lipid metabolism in human monocyte-derived DC, as revealed by microarrays analysis. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases. We used microarrays analysis to understand the impact of IL-17A on human monocyte-derived human dendritic cells. We found overexpression of many genes involved in lipid metabolism in IL-17A-treated dendritic cells compared to untreated dendritic cells. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases.
Project description:IL-17A has emerged as a pivotal driver of tissue pathology in many immune-mediated inflammatory diseases. Despite sharing 50% sequence homology and the same signalling pathway, the role of IL-17F remains less clear. ChIP sequencing of human IL-17 popualtions isolated using a cytokine capture technique identified clear epigenetic differences in IL-17A and IL-17F producing cells.
Project description:The levels of IL-17 are elevated in the serum of psoriasis patients. However, the effects of IL-17 on circulating leukocytes bearing the IL-17 receptors are not fully understood. Of particular interest are monocytes, as the activation and recruitment of effector monocytes underlies the pathobiology of a number systemic inflammatory diseases, including psoriasis co-morbidities, such as atherosclerosis, metabolic regulation in adipose tissue and psoriatic arthritis. Human monocytes highly express both IL-17RA and IL-17RC and chemotraffick in response to IL-17. We explored the impact of IL-17 on blood monocytes. Using cDNA microarray, , we molecularly characterized how human blood monocytes respond to IL-17A in vitro. total RNA was extratced from CD14+ monocytes (isolated from human blood) after 24hr culture with or without IL-17A (200ng/mL)
Project description:The goal of this study was to elucidate the effects of inflammation on bone metabolism. As we found IL-17A is induced immediately after bone injury and Il17a−/− mice showed delayed healing, we analyzed the effects of IL-17A on mesenchymal cells in the repair tissue. Most of the IL-17RA+ cells were PαS cells. We collected these cells and analyzed their response to IL-17A by RNA sequencing. This analysis will provide a mechanistic insight into the mechanism of how IL-17A promote bone formation in the context of bone fracture healing.