Project description:ChIP-seq data from mouse adipocyte. Mature 3T3-L1 adipocytes were cross-linked with 1% formaldehyde 10 days after induction with MDI. Frozen cell pellets were submitted to the Broad Institute for subsequent analysis of Ebf1-bound regions using anti-Ebf1 antibody (Abnova H00001879-M01).
Project description:gene expression data from mouse adipocyte, with and without Ebf1 knock-down To ascertain the functional targets of Ebf1 in adipocytes, we depleted Ebf1 from mature 3T3-L1 cells by transducing them with lentivirus harboring one of two different Ebf1-specific hairpins or a scrambled control. We then performed expression profiling using Affymetrix arrays with triplicate samples for each hairpin.
Project description:Proteotoxicity from insufficient clearance of misfolded/damaged proteins underlies many diseases. Carboxyl terminus of Hsc70-interacting protein (CHIP) is an important regulator of proteostasis in many cells, having E3-ligase and chaperone functions and often directing damaged proteins towards proteasome recycling. While enhancing CHIP functionality has broad therapeutic potential, prior efforts have all relied on genetic upregulation. Here we demonstrate that CHIP-mediated protein turnover is markedly post-translationally enhanced by direct protein kinase G (PKG) phosphorylation at S20 (mouse, S19 human). This increases CHIP binding affinity to Hsc70, CHIP protein halflife, and consequent clearance of stress-induced ubiquitinated-insoluble proteins. PKGmediated CHIP-pS20 or expressing CHIP-S20E (phosphomimetic) reduces ischemic proteo- and cytotoxicity, whereas a phospho-silenced CHIP-S20A amplifies both. In vivo, depressing PKG activity lowers CHIP-S20 phosphorylation and protein, exacerbating proteotoxicity and heart dysfunction after ischemic injury. CHIP-S20E knock-in mice better clear ubiquitinated proteins and are cardio-protected. PKG activation provides post-translational enhancement of protein quality control via CHIP.
Project description:The individualized treatment of tumors has always been an urgent problem in clinical practice. Organoids-on-a-chip can reflect the heterogeneity of tumors and is a good model for in vitro anticancer drug screening. In this study, surgical specimens of patients with advanced colorectal cancer will be collected for organoid culture and organoids-on-a- chip. Use organoids-on-a-chip to screen tumor chemotherapy drugs, compare the results of patients’ actual medication regimens, and study the guiding role of organoids in the formulation of precise tumor treatment plans. The investigators will compare the response of organoids to drugs in vitro with the patient’s response to actual chemotherapy and targeted drugs and explore the feasibility and accuracy of organoids-on-a-chip based drug screening for advanced colorectal cancer. The project will establish a screening platform for chemotherapeutic drugs and targeted drugs based on colorectal cancer organoids to quickly and accurately formulate personalized treatment plans for clinical patients.