Project description:Analysis of dopaminergic neuronal gene expression changes by Nurr1 and/or Foxa2 overexpression. Result provides that Foxa2 potentiates Nurr1-induced DA neuronal phenotype gene expression.
Project description:Analysis of dopaminergic neuronal gene expression changes by Nurr1 and/or Foxa2 overexpression. Result provides that Foxa2 potentiates Nurr1-induced DA neuronal phenotype gene expression. To identify the syergism of Nurr1 and Foxa2 for developing DA neural precursors, neural precusor cells (NPCs) isolated from embryonic brain were treated control, Nurr1, Foxa2 and Nurr1-Foxa2 retrovirus. After treatment of retroviruses, NPCs were cultrued in N2 media withdrawn mitogen (bFGF, EGF) for differetiation of DA neuron. Total RNA was obtained from NPCs in differentiation day 2.
Project description:Skeletal muscle plays a central role in the control of metabolism and exercise tolerance. Analysis of muscle enhancers activated after exercise in mice revealed the orphan nuclear receptor NURR1/NR4A2 as a prominent component of exercise-responsive enhancers. We show that exercise enhances the expression of NURR1 and transgenic overexpression of NURR1 in skeletal muscle confers an endurance phenotype in mice. NURR1 expression in skeletal muscle is also sufficient to prevent hyperglycemia and hepatic steatosis by enhancing muscle glucose uptake and storage as glycogen. Furthermore, treatment of obese mice with putative NURR1 agonists increases energy expenditure, improves glucose tolerance, and confers a lean phenotype, mimicking the effects of exercise. These findings identify a key role for NURR1 in governance of skeletal muscle glucose metabolism and reveal a transcriptional link between exercise and metabolism. Our findings also identify NURR1 agonists as possible exercise mimetics with the potential to ameliorate obesity and other metabolic abnormalities.
Project description:Skeletal muscle plays a central role in the control of metabolism and exercise tolerance. Analysis of muscle enhancers activated after exercise in mice revealed the orphan nuclear receptor NURR1/NR4A2 as a prominent component of exercise-responsive enhancers. We show that exercise enhances the expression of NURR1 and transgenic overexpression of NURR1 in skeletal muscle confers an endurance phenotype in mice. NURR1 expression in skeletal muscle is also sufficient to prevent hyperglycemia and hepatic steatosis by enhancing muscle glucose uptake and storage as glycogen. Furthermore, treatment of obese mice with putative NURR1 agonists increases energy expenditure, improves glucose tolerance, and confers a lean phenotype, mimicking the effects of exercise. These findings identify a key role for NURR1 in governance of skeletal muscle glucose metabolism and reveal a transcriptional link between exercise and metabolism. Our findings also identify NURR1 agonists as possible exercise mimetics with the potential to ameliorate obesity and other metabolic abnormalities.
Project description:The transcription factor nurr1 plays a pivotal role in the development and maintenance of neurotransmitter phenotype in midbrain dopamine neurons. Conversely, decreased nurr1 expression is associated with a number of dopamine-related CNS disorders, including Parkinson’s disease and drug addiction. In order to better understand the nature of nurr1-responsive genes and their potential roles in dopamine neuron differentiation and survival, we used a neural cellular background in which to generate a number of stable clonal lines with graded nurr1 gene expression that approximated that seen in DA cell-rich human substantia nigra. Gene expression profiling data from these nurr1-expressing clonal lines were validated by quantitative RT-PCR and subjected to bioinformatic analyses. The present study identified a large number of nurr1-responsive genes and demonstrated the potential importance of concentration-dependent nurr1 effects in the differential regulation of distinct nurr1 target genes and biological pathways. These data support the promise of nurr1-based CNS therapeutics for the neuroprotection and/or functional restoration of DA neurons.
Project description:We ovexpressed human alpha synuclein alone or together with Nurr1 in mouse primary midbrain cultures and identified the full spectrum of genes whose expression is affected by alpha synuclein, including genes whose expression is normalized after Nurr1 overexpression. Moreover we treated mouse primary midbrain cultures with Bexarotene or short hairpin RNA fro Nurr1, sorted out the dopamine neurons and assessed the effects of Bexarotene and of the Nurr1 downregulation on gene expression.
Project description:The transcription factor nurr1 plays a pivotal role in the development and maintenance of neurotransmitter phenotype in midbrain dopamine neurons. Conversely, decreased nurr1 expression is associated with a number of dopamine-related CNS disorders, including Parkinson’s disease and drug addiction. In order to better understand the nature of nurr1-responsive genes and their potential roles in dopamine neuron differentiation and survival, we used a neural cellular background in which to generate a number of stable clonal lines with graded nurr1 gene expression that approximated that seen in DA cell-rich human substantia nigra. Gene expression profiling data from these nurr1-expressing clonal lines were validated by quantitative RT-PCR and subjected to bioinformatic analyses. The present study identified a large number of nurr1-responsive genes and demonstrated the potential importance of concentration-dependent nurr1 effects in the differential regulation of distinct nurr1 target genes and biological pathways. These data support the promise of nurr1-based CNS therapeutics for the neuroprotection and/or functional restoration of DA neurons. Total RNA obtained from nurr1-overexpressing SKNAS neuroblastoma clonal cell lines (SKNAS_E & SKNAS_G) compared to empty vector transfected control (SKNAS_C)