Genome-wide assessments of transcriptional pauses and errors by nascent transcript sequencing combined with RNase footprinting (RNET-seq)
Ontology highlight
ABSTRACT: We developed native elongating transcript sequencing (NET-seq, Churchman and Weissman Nature 2011, PMID: 21248844) combined with RNase footprinting of nascent transcripts (RNET-seq) to visualize translocation dynamics and nascent transcript errors in paused RNA polymerases in E. coli. We employed RNET-seq to the wild-type (WT) E. coli strain and to an isogenic strain deficient in genes for GreA and GreB (ΔgreAB). Gre factors and their eukaryotic analog TFIIS rescue backtracked complexes of RNAP. Briefly, the cells were rapidly lysed via spheroplasting, and the transcribing RNAPs were released from the genomic DNA by digestion with DNase I. Any ribosomes involved in co-transcriptional translation were separated from RNAP by digestion with RNase A. All RNAPs including those associated with the fragmented double-stranded DNAs and their 5’-truncated nascent RNAs were immobilized on Ni2+-NTA beads through the hexa-histidine-tagged β’ subunit and then extensively washed with a high-salt buffer. The 5’ ends of the transcripts in ECs were trimmed with RNase T1/V1 to leave a minimal length of RNA protected by RNAP. The RNases were subsequently removed by further washing of the beads. Elution with imidazole generated ECs carrying ~6-30 nt long transcripts. The nascent RNAs isolated from the ΔgreAB strain were longer than those from the WT strain and peaked at 18 nt versus 16 nt suggesting an enrichment of backtracked ECs, which is expected to occur in the absence of Gre-dependent 3’ RNA cleavage.
ORGANISM(S): Escherichia coli
PROVIDER: GSE62102 | GEO | 2015/04/29
SECONDARY ACCESSION(S): PRJNA263197
REPOSITORIES: GEO
ACCESS DATA