Transcriptomics

Dataset Information

0

Plasmodium falciparum gene expression measured directly from tissue during human infection


ABSTRACT: Abstract of associated publication: Background: During the latter half of the natural 48-hour intraerythrocytic life cycle of human Plasmodium falciparum infection, parasites sequester deep in endothelium tissues, away from the spleen and inaccessible to peripheral blood. These late-stage parasites may cause tissue damage and likely contribute to clinical disease, and a more complete understanding of their biology is needed. Because these life cycle stages are not easily sampled due to deep tissue sequestration, measuring in vivo gene expression of parasites in the trophozoite and schizont stages has been a challenge. Methods: We developed a custom nCounter® gene expression platform, and used this platform to measure malaria parasite gene expression profiles in vitro and in vivo. We also used imputation to generate global transcriptional profiles, and assessed differential gene expression between parasites growing in vitro and those recovered from malaria-infected patient tissues collected at autopsy. Results: We demonstrate, for the first time, global transcriptional expression profiles from in vivo malaria parasites sequestered in human tissues. We found that parasite physiology can be correlated with in vitro data from an existing life cycle data set, and that parasites in sequestered tissues show an expected schizont-like transcriptional profile, which is conserved across tissues from the same patient. Imputation based on 60 landmark genes generated global transcriptional profiles that were highly correlated with genome-wide expression patterns from the same sample measured by microarray. Finally, differential expression revealed a limited set of in vivo upregulated transcripts, which may indicate unique parasite genes involved in human clinical infections. Conclusions: Our study highlights the utility of a custom nCounter® P. falciparum probe set, validation of imputation within Plasmodium species, and documentation of in vivo schizont-stage expression patterns from human tissues.

ORGANISM(S): Homo sapiens Plasmodium falciparum

PROVIDER: GSE63260 | GEO | 2014/11/15

SECONDARY ACCESSION(S): PRJNA267187

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2018-02-13 | PXD008250 | Pride
2018-04-27 | GSE113718 | GEO
2017-03-11 | GSE96066 | GEO
2024-11-05 | GSE239393 | GEO
2022-07-01 | PXD028193 |
2016-07-15 | E-GEOD-76537 | biostudies-arrayexpress
2012-07-14 | E-GEOD-33797 | biostudies-arrayexpress
2012-07-14 | E-GEOD-33796 | biostudies-arrayexpress
2021-05-26 | GSE163144 | GEO
2017-02-08 | E-ERAD-611 | biostudies-arrayexpress