Project description:MicroRNA sequencing using Ion Torrent Proton platform of the undamaged heart of the red spotted newt Notophthalmus viridescens. MicroRNAS were identified using MIRPIPE
Project description:We have adapted a commercial assay that employs mRNA quantification based on the frequency of PCR amplicons determined by next-generation to a high-throughput semi-conductor sequencing platform (Ion-Torrent Proton). We show parallel amplification of pathway derived transcript sets/genes in 12 reference RNA samples followed by sequence-based quantification covering a dynamic range of five orders of magnitude with low technical variation.
Project description:Recombinant PGRN and GRN peptides were used to treat fully differentiated SH-SY5Y cells. Post-treatment cells were lysed and used for RNA Seq using the ion-Torrent proton platform. Results were validated using real time PCR.
Project description:Background: Though Illumina has largely dominated the RNA-Seq field, the simultaneous availability of Ion Torrent has left scientists wondering which platform is most effective for differential gene expression (DGE) analysis. Previous investigations of this question have typically used reference samples derived from cell lines and brain tissue, and do not involve biological variability. While these comparisons might inform studies of tissue-specific expression, marked by large-scale transcriptional differences, this is not the common use case. Results: Here we employ a standard treatment/control experimental design, which enables us to evaluate these platforms in the context of the expression differences common in differential gene expression experiments. Specifically, we assessed the hepatic inflammatory response of mice by assaying liver RNA from control and IL-1β treated animals with both the Illumina HiSeq and the Ion Torrent Proton sequencing platforms. We found the greatest difference between the platforms at the level of read alignment, a moderate level of concordance at the level of DGE analysis, and nearly identical results at the level of differentially affected pathways. Interestingly, we also observed a strong interaction between sequencing platform and choice of aligner. By aligning both real and simulated Illumina and Ion Torrent data with the twelve most commonly-cited aligners in the literature, we observed that different aligner and platform combinations were better suited to probing different genomic features; for example, disentangling the source of expression in gene-pseudogene pairs. Conclusions: Taken together, our results indicate that while Illumina and Ion Torrent have similar capacities to detect changes in biology from a treatment/control experiment, these platforms may be tailored to interrogate different transcriptional phenomena through careful selection of alignment software.
Project description:We have adapted a commercial assay that employs mRNA quantification based on the frequency of PCR amplicons determined by next-generation to a high-throughput semi-conductor sequencing platform (Ion-Torrent Proton). We show parallel amplification of pathway derived transcript sets/genes in 12 reference RNA samples followed by sequence-based quantification covering a dynamic range of five orders of magnitude with low technical M-BM- variation. Expression of selected genes were profiled at four time points (0d, 10d, 20d, and 60d) during differentiation of induced pluripotent stem cells into cardiomyocytes, with three independent biological replicates at each time point.
Project description:Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we present a novel MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is scalable and accurately identifies sites of differential DNA methylation. Additionally, we demonstrate that the high-throughput data derived from MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450K Beadchip array. We applied this integrative approach to further investigate the role of DNA methylation in alternative splicing and to profile 5-mC and 5-hmC variants of DNA methylation in normal human brain tissue that we observed localize over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions. MeDIP-Seq on Ion Torrent Platform in HCT116 and Human Brain
Project description:Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we present a novel MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is scalable and accurately identifies sites of differential DNA methylation. Additionally, we demonstrate that the high-throughput data derived from MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450K Beadchip array. We applied this integrative approach to further investigate the role of DNA methylation in alternative splicing and to profile 5-mC and 5-hmC variants of DNA methylation in normal human brain tissue that we observed localize over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions.
Project description:The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here, we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumor tissues.