Project description:SMARCB1 (also known as SNF5, INI1, and BAF47), a core subunit of the SWI/SNF (BAF) chromatin-remodeling complex, is inactivated in nearly all pediatric rhabdoid tumors. These aggressive cancers are among the most genomically stable, suggesting an epigenetic mechanism by which SMARCB1 loss drives transformation. Here we show that, despite having indistinguishable mutational landscapes, human rhabdoid tumors exhibit distinct enhancer H3K27ac signatures, which identify remnants of differentiation programs. We show that SMARCB1 is required for the integrity of SWI/SNF complexes and that its loss alters enhancer targeting-markedly impairing SWI/SNF binding to typical enhancers, particularly those required for differentiation, while maintaining SWI/SNF binding at super-enhancers. We show that these retained super-enhancers are essential for rhabdoid tumor survival, including some that are shared by all subtypes, such as SPRY1, and other lineage-specific super-enhancers, such as SOX2 in brain-derived rhabdoid tumors. Taken together, our findings identify a new chromatin-based epigenetic mechanism underlying the tumor-suppressive activity of SMARCB1.
Project description:SMARCB1 (SNF5/INI1/BAF47), a core subunit of the SWI/SNF (BAF) chromatin remodeling complex, is inactivated in nearly all pediatric rhabdoid tumors. These aggressive cancers are among the most genomically stable, suggesting an epigenetic mechanism by which SMARCB1 loss drives transformation. Here, we show that despite indistinguishable mutational landscapes, human RTs show distinct enhancer H3K27ac signatures, which reveal remnants of differentiation programs. We show that SMARCB1 is required for the integrity of SWI/SNF complexes and that its loss alters enhancer targeting markedly impairing SWI/SNF binding to typical enhancers, particularly those required for differentiation, while maintaining SWI/SNF binding at super-enhancers. We show that these retained super-enhancers are essential for rhabdoid tumor survival, including some that are shared across all subtypes, such as SPRY1, and other lineage-specific super-enhancers like SOX2 in brain-derived RTs. Taken together, our findings reveal a novel chromatin-based epigenetic mechanism underlying the tumor suppressive activity of SMARCB1.
Project description:SMARCB1 (SNF5/INI1/BAF47), a core subunit of the SWI/SNF (BAF) chromatin remodeling complex, is inactivated in nearly all pediatric rhabdoid tumors. These aggressive cancers are among the most genomically stable, suggesting an epigenetic mechanism by which SMARCB1 loss drives transformation. Here, we show that despite indistinguishable mutational landscapes, human RTs show distinct enhancer H3K27ac signatures, which reveal remnants of differentiation programs. We show that SMARCB1 is required for the integrity of SWI/SNF complexes and that its loss alters enhancer targeting markedly impairing SWI/SNF binding to typical enhancers, particularly those required for differentiation, while maintaining SWI/SNF binding at super-enhancers. We show that these retained super-enhancers are essential for rhabdoid tumor survival, including some that are shared across all subtypes, such as SPRY1, and other lineage-specific super-enhancers like SOX2 in brain-derived RTs. Taken together, our findings reveal a novel chromatin-based epigenetic mechanism underlying the tumor suppressive activity of SMARCB1.
Project description:SMARCB1 (SNF5/INI1/BAF47), a core subunit of the SWI/SNF (BAF) chromatin remodeling complex, is inactivated in nearly all pediatric rhabdoid tumors. These aggressive cancers are among the most genomically stable, suggesting an epigenetic mechanism by which SMARCB1 loss drives transformation. Here, we show that despite indistinguishable mutational landscapes, human RTs show distinct enhancer H3K27ac signatures, which reveal remnants of differentiation programs. We show that SMARCB1 is required for the integrity of SWI/SNF complexes and that its loss alters enhancer targeting markedly impairing SWI/SNF binding to typical enhancers, particularly those required for differentiation, while maintaining SWI/SNF binding at super-enhancers. We show that these retained super-enhancers are essential for rhabdoid tumor survival, including some that are shared across all subtypes, such as SPRY1, and other lineage-specific super-enhancers like SOX2 in brain-derived RTs. Taken together, our findings reveal a novel chromatin-based epigenetic mechanism underlying the tumor suppressive activity of SMARCB1.
Project description:SMARCB1 (SNF5/INI1/BAF47), a core subunit of the SWI/SNF (BAF) chromatin remodeling complex, is inactivated in nearly all pediatric rhabdoid tumors. These aggressive cancers are among the most genomically stable, suggesting an epigenetic mechanism by which SMARCB1 loss drives transformation. Here, we show that despite indistinguishable mutational landscapes, human RTs show distinct enhancer H3K27ac signatures, which reveal remnants of differentiation programs. We show that SMARCB1 is required for the integrity of SWI/SNF complexes and that its loss alters enhancer targeting markedly impairing SWI/SNF binding to typical enhancers, particularly those required for differentiation, while maintaining SWI/SNF binding at super-enhancers. We show that these retained super-enhancers are essential for rhabdoid tumor survival, including some that are shared across all subtypes, such as SPRY1, and other lineage-specific super-enhancers like SOX2 in brain-derived RTs. Taken together, our findings reveal a novel chromatin-based epigenetic mechanism underlying the tumor suppressive activity of SMARCB1.
Project description:Lineage switching can induce therapy resistance in cancer. Yet, how lineage fidelity is maintained and how it can be lost remain poorly understood. Here, we have used CRISPR-Cas9-based genetic screening to demonstrate that loss of SMARCB1, a member of the SWI/SNF chromatin remodeling complex, can confer an advantage to clear cell renal cell carcinoma (ccRCC) cells upon inhibition of the renal lineage factor PAX8. Lineage factor inhibition-resistant ccRCC cells formed tumors with morphological features, but not molecular markers, of neuroendocrine differentiation. SMARCB1 inactivation led to large-scale loss of kidney-specific epigenetic programs and restoration of proliferative capacity through the adoption of new dependencies on factors that represent rare essential genes across different cancers. We further developed an analytical approach to systematically characterize lineage fidelity using large-scale CRISPR-Cas9 data. An understanding of the rules that govern lineage switching could aid the development of more durable lineage factor-targeted and other cancer therapies.
Project description:Cancer cells frequently depend on chromatin regulatory activities to maintain a malignant phenotype. Here, we show that leukemia cells require the mammalian SWI/SNF chromatin remodeling complex for their survival and aberrant self-renewal potential. While Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cell types, we found that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as one of its key targets. To account for this context-specific function, we identify a cluster of lineage-specific enhancers located 1.7 Mb downstream from Myc that are occupied by SWI/SNF as well as the BET protein Brd4. Brg1 is required at these distal elements to maintain transcription factor occupancy and for long-range chromatin looping interactions with the Myc promoter. Notably, these distal Myc enhancers coincide with a region that is focally amplified in ?3% of acute myeloid leukemias. Together, these findings define a leukemia maintenance function for SWI/SNF that is linked to enhancer-mediated gene regulation, providing general insights into how cancer cells exploit transcriptional coactivators to maintain oncogenic gene expression programs.
Project description:Growing evidence indicates that chromatin remodeler mutations underlie the pathogenesis of human neurocristopathies or disorders that affect neural crest cells (NCCs). However, causal relationships among chromatin remodeler subunit mutations and NCC defects remain poorly understood. Here we show that homozygous loss of ARID1A-containing, SWI/SNF chromatin remodeling complexes (BAF-A) in NCCs results in embryonic lethality in mice, with mutant embryos succumbing to heart defects. Strikingly, monoallelic loss of ARID1A in NCCs led to craniofacial defects in adult mice, including shortened snouts and low set ears, and these defects were more pronounced following homozygous loss of ARID1A, with the ventral cranial bones being greatly reduced in size. Early NCC specification and expression of the BRG1 NCC target gene, PLEXINA2, occurred normally in the absence of ARID1A. Nonetheless, mutant embryos displayed incomplete conotruncal septation of the cardiac outflow tract and defects in the posterior pharyngeal arteries, culminating in persistent truncus arteriosus and agenesis of the ductus arteriosus. Consistent with this, migrating cardiac NCCs underwent apoptosis within the circumpharyngeal ridge. Our data support the notion that multiple, distinct chromatin remodeling complexes govern genetically separable events in NCC development and highlight a potential pathogenic role for NCCs in the human BAF complex disorder, Coffin-Siris Syndrome.