Positively selected enhancer elements endow tumor cells with metastatic competence
Ontology highlight
ABSTRACT: Metastasis results from a complex set of traits acquired by tumor cells, distinct from those necessary for tumorigenesis. Here, we investigate the contribution of enhancer elements to the metastatic phenotype of osteosarcoma. Through epigenomic profiling, we identify substantial differences in signature enhancer-histone marks between near-isogenic pairs of high and low lung-metastatic osteosarcoma cells. We term these regions Metastatic Variant Enhancer Loci (Met-VELs). Met-VELs drive coordinated waves of gene expression during metastatic colonization of the lung. Met-VELs cluster non-randomly, indicating that activity of these enhancers and their associated gene targets is positively selected. Osteosarcoma lung metastasis is inhibited by global interruptions of Met-VEL associated gene expression.
Project description:Purpose: Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. This study delineates how osteosarcoma cells educate the lung microenvironment during metastatic progression. Experimental design: Using single-cell transcriptomics (scRNA-seq), we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence. We evaluated the ability of nintedanib to impair metastatic colonization and prevent osteosarcoma-induced education of the lung microenvironment in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Results: Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially-differentiated epithelial intermediates. Inhibitionintermediates. Inhibition of fibrotic pathways with nintedanib prevented metastatic progression in multiple murine and human xenograft models. Conclusions: Our work demonstrates that osteosarcoma cells co-opt fibrosis to promote metastatic outgrowth. When harmonized with data from adult epithelial cancers, our results support a generalized model wherein aberrant mesenchymal-epithelial interactions are critical for promoting lung metastasis. Adult epithelial carcinomas induce fibrotic pathways in normal lung fibroblasts, whereas osteosarcoma, a pediatric mesenchymal tumor, exhibits fibrotic reprogramming in response to the aberrant wound-healing behaviors of an otherwise normal lung epithelium, which are induced by tumor cell interactions.
Project description:Purpose: Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. This study delineates how osteosarcoma cells educate the lung microenvironment during metastatic progression. Experimental design: Using single-cell transcriptomics (scRNA-seq), we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence. We evaluated the ability of nintedanib to impair metastatic colonization and prevent osteosarcoma-induced education of the lung microenvironment in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Results: Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially-differentiated epithelial intermediates. Inhibitionintermediates. Inhibition of fibrotic pathways with nintedanib prevented metastatic progression in multiple murine and human xenograft models. Conclusions: Our work demonstrates that osteosarcoma cells co-opt fibrosis to promote metastatic outgrowth. When harmonized with data from adult epithelial cancers, our results support a generalized model wherein aberrant mesenchymal-epithelial interactions are critical for promoting lung metastasis. Adult epithelial carcinomas induce fibrotic pathways in normal lung fibroblasts, whereas osteosarcoma, a pediatric mesenchymal tumor, exhibits fibrotic reprogramming in response to the aberrant wound-healing behaviors of an otherwise normal lung epithelium, which are induced by tumor cell interactions.
Project description:Using a human colorectal cancer cell line we incremented its metastatic capacity in a mouse model of liver and lung metastasis. Afterwards, a comparison between the different metastatic derivatives is done. Metastatic derivatives were selected by the use of a balb/c nude mouse model. Once the metastasis appeared, the cells were extracted and expanded in culture. Thereafter RNA was extracted and hybridized
Project description:Using a human colorectal cancer cell line we incremented its metastatic capacity in a mouse model of liver and lung metastasis. Afterwards, a comparison between the different metastatic derivatives is done.
Project description:Metastasis results from a complex set of traits acquired by tumor cells, distinct from those necessary for tumorigenesis. Here, we investigate the contribution of enhancer elements to the metastatic phenotype of osteosarcoma. Through epigenomic profiling, we identify substantial differences in enhancer activity between primary and metastatic human tumors and between near isogenic pairs of highly lung metastatic and nonmetastatic osteosarcoma cell lines. We term these regions metastatic variant enhancer loci (Met-VELs). Met-VELs drive coordinated waves of gene expression during metastatic colonization of the lung. Met-VELs cluster nonrandomly in the genome, indicating that activity of these enhancers and expression of their associated gene targets are positively selected. As evidence of this causal association, osteosarcoma lung metastasis is inhibited by global interruptions of Met-VEL-associated gene expression via pharmacologic BET inhibition, by knockdown of AP-1 transcription factors that occupy Met-VELs, and by knockdown or functional inhibition of individual genes activated by Met-VELs, such as that encoding coagulation factor III/tissue factor (F3). We further show that genetic deletion of a single Met-VEL at the F3 locus blocks metastatic cell outgrowth in the lung. These findings indicate that Met-VELs and the genes they regulate play a functional role in metastasis and may be suitable targets for antimetastatic therapies.
Project description:Effective therapies for metastatic osteosarcoma (OS) remain a major clinical unmet need. Targeting mRNA translation in metastatic OS represents an attractive option, as selective translation under stress supports the rapid synthesis of cytoprotective proteins that facilitate metastatic competence. We therefore assessed eukaryotic translation factors in OS, revealing high expression of eIF4A1 in metastatic OS. The eIF4A1 inhibitor, CR-1-31B, potently inhibited metastatic OS growth in vitro and reduced lung tumor burden in orthotopic mouse models. CR-1-31B synergized with the oxidative stress inducer, tert-butylhydroquinone (tBHQ), to enhance cell death under oxidative stress. Proteomic analysis revealed a subset of proteins that were upregulated by tBHQ alone, but inhibited by co-treatment of CR-1-31B, most notably the NRF2 antioxidant transcription factor, and NRF2 inactivation phenocopied CR-1-31B in blocking OS lung metastasis in vivo. Collectively, our data reveal that targeting eIF4A1 with CR-1-31B is highly effective in blocking OS metastasis by blunting the NRF2 antioxidant response.
Project description:We report that metastasis in an autochthonous mouse model of sarcoma is driven by a single clone in the primary tumor. We performed RNA-seq comparing the gene expression profiles of the metastatic clones (MC) to matched non-metastatic clones (non-MC) from the same tumor for multiple tumors. RNA from lung metastases (Lung-Met) of matched tumors are sequenced as well.
Project description:Pulmonary metastasis is the main cause of medical failure and death of osteosarcoma patients. Despite intensive search for new therapeutic strategies, survival has not improved during the last two decades. Therefore, it’s very urgent to understand the underlying mechanisms of tumor progression to identify targets of novel therapies for osteosarcoma. We used microarrays to identify the metastasis-driving gene during osteosarcoma metastasis Microarrays are performed in ZOS and ZOSM-two syngenic primary human osteosarcoma cell lines with low and high metastatic potential which are established in our lab
Project description:Purpose: The overall survival rate for metastatic osteosarcoma hovers around 20%. Responses to second-line chemotherapy, targeted therapies, and immunotherapies have demonstrated limited efficacy in metastatic osteosarcoma. Our objective is to validate differentially expressed genes and signaling pathways between non-metastatic and metastatic osteosarcoma, employing single-cell RNA sequencing (scRNA-Seq) and additional functional investigations. We aim to enhance comprehension of metastatic mechanisms and potentially unveil a therapeutic target. Methods: scRNA-Seq was performed on two primary osteosarcoma lesions (1 non-metastatic and 1 metastatic). Uniform manifold approximation and projection (UMAP) facilitated dimensionality reduction and cluster identification. Copy number variation (CNV) was predicted using InferCNV. CellChat characterized ligand-receptor-based intercellular communication networks. Differentially expressed genes underwent GO function enrichment analysis and GSEA. Validation was achieved through the GSE 52048 dataset, which identified PDGFD-PDGFRB as a common ligand-receptor pair with significant contribution. Immunohistochemistry assessed PDGFD and PDGFRB expression, while multicolor immunofluorescence and flow cytometry provided insight into spatial relationships and the tumor immune microenvironment. Kaplan-Meier survival analysis compared metastasis-free survival and overall survival between high and low levels of PDGFD and PDGFRB. Manipulation of PDGFD expression in primary osteosarcoma cells examined invasion abilities and related markers. Results: Ten clusters encompassing osteoblasts, osteoclasts, osteocytes, fibroblasts, pericytes, endothelial cells, myeloid cells, T cells, B cells, and proliferating cells were identified. Osteoblasts, osteoclasts, and osteocytes exhibited heightened CNV levels. Ligand-receptor-based communication networks exposed significant fibroblast crosstalk with other cell types, and the PDGF signaling pathway was activated in non-metastatic osteosarcoma primary lesions. These results were corroborated by the GSE 52048 dataset, confirming the prominence of PDGFD-PDGFRB as a common ligand-receptor pair. Immunohistochemistry demonstrated considerably greater PDGFD expression in non-metastatic osteosarcoma tissue and organoids, correlating with extended metastasis-free and overall survival. PDGFRB expression showed no significant variation between non-metastatic and metastatic osteosarcoma, nor strong correlations with survival times. Multicolor immunofluorescence suggested co-localization of PDGFD with PDGFRB. Flow cytometry unveiled a highly immunosuppressive microenvironment in metastatic osteosarcoma. Manipulating PDGFD expression demonstrated altered invasive abilities and marker expressions in primary osteosarcoma cells from both non-metastatic and metastatic lesions. Conclusions: scRNA-Seq illuminated the activation of the PDGF signaling pathway in primary lesions of non-metastatic osteosarcoma. PDGFD displayed an inhibitory effect on osteosarcoma metastasis, likely through the suppression of the EMT signaling pathway.
Project description:Purpose: For patients with osteosarcoma, disease-related mortality most often results from lung metastasis—a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. Methods: We analyzed scRNAseq data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. Results: Expression patterns suggest that the MAPK pathway is significantly elevated in early and (to a lesser degree) established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. Conclusion: Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.