N6-methyladenosine demethylation by the fat mass and obesity-associated gene (FTO) defines tyrosine kinase inhibitor resistance in leukemia
Ontology highlight
ABSTRACT: The discovery of activating mutations in receptor tyrosine kinases (RTKs) leads to clinical testing of RTK inhibitors (TKIs). However, the rapid acquisition of resistance limits TKI effectiveness. Here we establish TKI-resistant cells that propagate in the absence of RTK signaling. Relative to sensitive cells, TKI-resistant cells display decreased N6-methyladenosine (m6A), a ubiquitous and reversible modification on RNA, but upregulated fat mass and obesity-associated gene (FTO), an m6A demethylase. Notably, the naïve leukemia cell populations are heterogeneous with respect to FTO levels. Cells with higher intrinsic and transient FTO expression demonstrate reduction of m6A methylation and TKI sensitivity with higher tumorigenic. Genetic or pharmacological dysfunction of FTO increases m6A abundance sensitizing resistant cells to TKIs. Mechanistically, FTO-mediated m6A demethylation promotes mRNA stability and protein translation rate, upregulating oncogenes that are indispensable for survival and proliferation. Our findings therefore establish a role of FTO-dependent m6A demethylation for TKI-resistance, offering a therapeutic window for incorporating m6A modulators in counteracting acquired TKI resistance.
ORGANISM(S): Homo sapiens
PROVIDER: GSE80481 | GEO | 2018/11/14
REPOSITORIES: GEO
ACCESS DATA