Project description:Wnt signals control three functions of intestinal crypts: maintenance of Lgr5 stem cells, proliferation of transit-amplifying daughters and formation of Paneth cells. Here, we study how the Wnt effector β-catenin/Tcf4 cooperates with the Wnt-activated transcription factor Ascl2 to control a stem cell transcription program. DNA elements that are co-occupied and synergistically regulated by Ascl2 and Tcf4 specifically map to stem cell genes. In vitro, Tcf4-/- mini-guts are rescued by Ascl2 expression, while Ascl2-/- organoids are rescued by Wnt signaling. A direct auto-activatory loop leads to an on/off expression pattern of Ascl2 with a threshold that depends on the previous state. Wnt/R-spondin1 activates this loop. This mechanism interprets Wnt levels in crypts and translates this continuous signal into a discrete Ascl2 âonâ or âoffâ decision. In turn Ascl2, together with β-catenin/Tcf, activates stem cell genes. Thus, Ascl2 forms a transcriptional 'stemness switch' that is both Wnt-responsive and Wnt-dependent Examination of Tcf4, B-catenin and Ascl2 DNA occupancy in murine intestinal organoids and human colorectal cancer cell lines *** Original raw files unavailable due to loss during backup ***
Project description:Wnt signals control three functions of intestinal crypts: maintenance of Lgr5 stem cells, proliferation of transit-amplifying daughters and formation of Paneth cells. Here, we study how the Wnt effector β-catenin/Tcf4 cooperates with the Wnt-activated transcription factor Ascl2 to control a stem cell transcription program. DNA elements that are co-occupied and synergistically regulated by Ascl2 and Tcf4 specifically map to stem cell genes. In vitro, Tcf4-/- mini-guts are rescued by Ascl2 expression, while Ascl2-/- organoids are rescued by Wnt signaling. A direct auto-activatory loop leads to an on/off expression pattern of Ascl2 with a threshold that depends on the previous state. Wnt/R-spondin1 activates this loop. This mechanism interprets Wnt levels in crypts and translates this continuous signal into a discrete Ascl2 “on” or “off” decision. In turn Ascl2, together with β-catenin/Tcf, activates stem cell genes. Thus, Ascl2 forms a transcriptional 'stemness switch' that is both Wnt-responsive and Wnt-dependent.
Project description:Wnt signals control three functions of intestinal crypts: maintenance of Lgr5 stem cells, proliferation of transit-amplifying daughters and formation of Paneth cells. Here, we study how the Wnt effector β-catenin/Tcf4 cooperates with the Wnt-activated transcription factor Ascl2 to control a stem cell transcription program. DNA elements that are co-occupied and synergistically regulated by Ascl2 and Tcf4 specifically map to stem cell genes. In vitro, Tcf4-/- mini-guts are rescued by Ascl2 expression, while Ascl2-/- organoids are rescued by Wnt signaling. A direct auto-activatory loop leads to an on/off expression pattern of Ascl2 with a threshold that depends on the previous state. Wnt/R-spondin1 activates this loop. This mechanism interprets Wnt levels in crypts and translates this continuous signal into a discrete Ascl2 “on” or “off” decision. In turn Ascl2, together with β-catenin/Tcf, activates stem cell genes. Thus, Ascl2 forms a transcriptional 'stemness switch' that is both Wnt-responsive and Wnt-dependent
Project description:N6-methyladenosine (m6A) mRNA methylation has emerged as an important player in many biological processes by regulating gene expression. However, its roles in intestinal stem cell (ISC) homeostasis remain largely unknown. Here we report that YTHDF1, an m6A reader, is highly expressed in ISCs and its expression is upregulated by Wnt signaling at the translational level. Whereas YTHDF1 is dispensable for normal intestinal development in mice, genetic ablation of Ythdf1 dramatically blocks Wnt-driven regeneration and tumorigenesis with reduced ISC stemness. Mechanistically, YTHDF1 facilitates the translation of Wnt signaling effectors including TCF7L2/TCF4, while this process is enhanced during Wnt activation to augment ?-catenin activity. Targeting YTHDF1 in ISCs of established tumors leads to tumor shrinkage and prolonged survival. Collectively, our studies unveil YTHDF1 as an amplifier of Wnt/?-catenin signaling at the translational level, which is required for the maintenance of ISCs during regeneration and tumorigenesis.
Project description:N6-methyladenosine (m6 A) mRNA methylation has emerged as an important player in many biological processes by regulating gene expression. However, its roles in intestinal stem cell (ISC) homeostasis remain largely unknown. Here, we report that YTHDF1, an m6 A reader, is highly expressed in ISCs and its expression is upregulated by Wnt signaling at the translational level. Whereas YTHDF1 is dispensable for normal intestinal development in mice, genetic ablation of Ythdf1 dramatically blocks Wnt-driven regeneration and tumorigenesis with reduced ISC stemness. Mechanistically, YTHDF1 facilitates the translation of Wnt signaling effectors including TCF7L2/TCF4, while this process is enhanced during Wnt activation to augment β-catenin activity. Targeting YTHDF1 in ISCs of established tumors leads to tumor shrinkage and prolonged survival. Collectively, our studies unveil YTHDF1 as an amplifier of Wnt/β-catenin signaling at the translational level, which is required for the maintenance of ISCs during regeneration and tumorigenesis.
Project description:Distinctive structures called crypts harbor intestinal epithelial stem cells (IESCs) which generate progenitor and terminally differentiated cells in the intestinal epithelium. Mammalian IESCs and their daughter cells require the participation of DNA methylation and the transcription factor Sox9 for proliferation and differentiation. However, the association between Sox9 and DNA methylation in this process remains elusive.The DNA methylation of small intestinal epithelial crypts in db/db mice was detected via combining methylated DNA immunoprecipitation with microarray hybridization. DNA methylation of Sox9 promoter in crypts and IESCs was validated using bisulfite sequence analysis. The target sequence of the transcription factor Sox9 in IESCs was investigated via chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq).Increased Sox9 expression is accompanied by the loss of methylation in its promoter in IESCs. Sox9 targets the enhancers of the Wnt signaling pathway-related genes. Sox9 predominantly acts as a transcriptional activator at proximal enhancers of Wnt4, Tab2, Sox4, and Fzd8, but also functions as a potential transcriptional inhibitor at a distant enhancer of Cdk1. Lack of Sox9 transcriptional activation in specific repressors of the Wnt signaling pathway leads to the loss of intrinsic inhibitory action and ultimately produces overactivation of this pathway in db/db mice.Our study sheds light on the connections among DNA methylation, transcription factor modulation, and Wnt signaling in IESCs in the diabetic state. Hypomethylation in the Sox9 promoter is correlated to increased Sox9 expression in db/db IESCs. Although there is increased expression of Sox9 in db/db IESCs, the loss of Sox9 transcriptional activation in specific repressors of the Wnt signaling pathway might result in abnormalities in this pathway.