Project description:In this study, the genes that encode AP2/ERF transcription factors, namely OpERF1 to OpERF5, were isolated from HR of O. pumila. Phylogenetic analysis of AP2/ERF protein sequences suggested the close evolutionary relationship of OpERF1 with stress-responsive ERF factors in Arabidopsis and of OpERF2 with ERF factors reported to regulate alkaloid production, such as ORCA3 in Catharanthus roseus, NIC2-locus ERFs in tobacco, and JRE4 in tomato. We generated the HR lines of O. pumila, ERF1i and ERF2i, in which the expression of OpERF1 and OpERF2, respectively, was suppressed using RNA interference technique. The transcriptome and metabolome of these suppressed HR were analyzed for functional characterization of OpERF1 and OpERF2.
Project description:Comparison of BOLITA mutant leaves (gain-of-function mutant) vs. wild type leaves, grown in the same conditions. The BOLITA (BOL) gene (At1g24590), an AP2/ERF transcription factor, was characterized with the help of an activation tag mutant and overexpression lines in Arabidopsis and tobacco. The leaf size of plants overexpressing BOL was smaller than wild type plants due to a reduction in both cell size and cell number. Moreover, severe overexpressors showed ectopic callus formation in roots. Accordingly, global gene expression analysis using the overexpression mutant reflected the alterations in cell proliferation, differentiation and growth through expression changes in RBR, CYCD, and TCP genes, as well as genes involved in cell expansion (i.e. expansins and the actin remodeling factor ADF5). Furthermore, the expression of hormone signaling (i.e. auxin and cytokinin), biosynthesis (i.e. ethylene and jasmonic acid) and regulatory genes was found to be perturbed in bol-D mutant leaves. The gene is expressed at the shoot apical meristem, and more intensely at leaf primordia. It is also expressed at very young leaves, and flower buds. The gene is closely related to DORNROSCHEN.
Project description:Arabidopsis overexpressing ERF96 are more resistant against necrotrophic pathogen such as Botrytis cinerea. ERF96 is a member of the AP2/ERF superfamily of transcription factor. We used Microarray to determine which gene expressions are up-regulated due to an accumulation of ERF96 and to identify the putative direct target of this transcription factor.
Project description:Primary cell wall is an essential cell structure for plant playing major roles in plant growth, differentiation, and stress responses. Here we demonstrate that a group of AP2-ERF transcription factor regulates primary cell wall formation and can induce massive accumulation of it in empty fiber cell of the nst1-1 nst3-1 mutant lacking secondary cell wall in Arabidopsis. The transgenic plants expressing one of the AP2-ERF transcription factors fused with VP16 transcriptional activation domain under the control of NST3 promoter in the nst1-1 nst3-1 mutant showed similar level of cell wall contents with wild type by the massive accumulation of cell wall which lacks lignin and xylan. The transgenic plants showed 70% higher saccharification efficiency than wild type. Gene expression analysis using microarray revealed that genes related to primary cell wall were highly upregulated in the transgenic plant. Moreover, chimeric-activator of the AP2-ERF transcription factor accelerated cell wall regeneration of mesophyll protoplast of Arabidopsis while the chimeric-repressor retarded it. These data suggest that the group of AP2-ERF transcription factor is key regulator of the primary cell wall formation in plant and could be employed to produce massive cell wall with readily extractable feature.
Project description:Arabidopsis overexpressing ERF96 are more resistant against necrotrophic pathogen such as Botrytis cinerea. ERF96 is a member of the AP2/ERF superfamily of transcription factor. We used Microarray to determine which gene expressions are up-regulated due to an accumulation of ERF96 and to identify the putative direct target of this transcription factor. Microarray were performed from the RNA of a four-week old Arabidopsis overexpressing ERF96 and WT(col-0). RNA was extracted during three independant experiments
Project description:Nicotiana benthamiana AP2/ERF transcription factor NbERF-IX-33 is involved in the regulation of phytoalexin production for the resistance of Nicotiana benthamiana to Phytophthora infestans