Project description:Many proteins associate with elongating RNA polymerase II (RNAPII), although the functions of most of them are still not well understood. Spt5 is an essential transcription elongation factor that binds directly to RNA polymerase and is conserved in prokaryotes, archaea, and eukaryotes1. In eukaryotes, evidence suggests that Spt5 functions in transcription elongation by both RNA polymerases I and II, mRNA capping, mRNA splicing, and mRNA 3’ end formation2. However, the genome-wide requirement for Spt5 in transcription has not been extensively studied. To address this issue, we have comprehensively analyzed the consequences of Spt5 depletion on transcription by RNAPII in Schizosaccharomyces pombe using four genome-wide approaches: ChIP-seq, NET-seq, 4tU-seq, and RNA-seq. Our results demonstrate that, in the absence of Spt5, RNAPII accumulates at a high level over the first ~500 bp of transcription units, suggesting that Spt5 is globally required to elongate past a barrier to transcription. This possibility is strongly supported by results showing that Spt5 is required for a normal level of RNA synthesis. In addition to these effects on sense-strand transcription, Spt5 depletion results in widespread convergent antisense transcription that initiates at approximately the same position as the sense-strand barrier. While the role of these antisense transcripts is unknown, the two that were tested control the distribution of RNAPII. Our results also show that Spt5 represses divergent antisense transcription, explaining why it has not been previously observed in S. pombe. Taken together, our results reveal a global and critical role for Spt5 in multiple classes of transcription by RNAPII.
Project description:Many proteins associate with elongating RNA polymerase II (RNAPII), although the functions of most of them are still not well understood. Spt5 is an essential transcription elongation factor that binds directly to RNA polymerase and is conserved in prokaryotes, archaea, and eukaryotes1. In eukaryotes, evidence suggests that Spt5 functions in transcription elongation by both RNA polymerases I and II, mRNA capping, mRNA splicing, and mRNA 3’ end formation2. However, the genome-wide requirement for Spt5 in transcription has not been extensively studied. To address this issue, we have comprehensively analyzed the consequences of Spt5 depletion on transcription by RNAPII in Schizosaccharomyces pombe using four genome-wide approaches: ChIP-seq, NET-seq, 4tU-seq, and RNA-seq. Our results demonstrate that, in the absence of Spt5, RNAPII accumulates at a high level over the first ~500 bp of transcription units, suggesting that Spt5 is globally required to elongate past a barrier to transcription. This possibility is strongly supported by results showing that Spt5 is required for a normal level of RNA synthesis. In addition to these effects on sense-strand transcription, Spt5 depletion results in widespread convergent antisense transcription that initiates at approximately the same position as the sense-strand barrier. While the role of these antisense transcripts is unknown, the two that were tested control the distribution of RNAPII. Our results also show that Spt5 represses divergent antisense transcription, explaining why it has not been previously observed in S. pombe. Taken together, our results reveal a global and critical role for Spt5 in multiple classes of transcription by RNAPII.
Project description:Many proteins associate with elongating RNA polymerase II (RNAPII), although the functions of most of them are still not well understood. Spt5 is an essential transcription elongation factor that binds directly to RNA polymerase and is conserved in prokaryotes, archaea, and eukaryotes1. In eukaryotes, evidence suggests that Spt5 functions in transcription elongation by both RNA polymerases I and II, mRNA capping, mRNA splicing, and mRNA 3’ end formation2. However, the genome-wide requirement for Spt5 in transcription has not been extensively studied. To address this issue, we have comprehensively analyzed the consequences of Spt5 depletion on transcription by RNAPII in Schizosaccharomyces pombe using four genome-wide approaches: ChIP-seq, NET-seq, 4tU-seq, and RNA-seq. Our results demonstrate that, in the absence of Spt5, RNAPII accumulates at a high level over the first ~500 bp of transcription units, suggesting that Spt5 is globally required to elongate past a barrier to transcription. This possibility is strongly supported by results showing that Spt5 is required for a normal level of RNA synthesis. In addition to these effects on sense-strand transcription, Spt5 depletion results in widespread convergent antisense transcription that initiates at approximately the same position as the sense-strand barrier. While the role of these antisense transcripts is unknown, the two that were tested control the distribution of RNAPII. Our results also show that Spt5 represses divergent antisense transcription, explaining why it has not been previously observed in S. pombe. Taken together, our results reveal a global and critical role for Spt5 in multiple classes of transcription by RNAPII.
Project description:Many proteins associate with elongating RNA polymerase II (RNAPII), although the functions of most of them are still not well understood. Spt5 is an essential transcription elongation factor that binds directly to RNA polymerase and is conserved in prokaryotes, archaea, and eukaryotes1. In eukaryotes, evidence suggests that Spt5 functions in transcription elongation by both RNA polymerases I and II, mRNA capping, mRNA splicing, and mRNA 3’ end formation2. However, the genome-wide requirement for Spt5 in transcription has not been extensively studied. To address this issue, we have comprehensively analyzed the consequences of Spt5 depletion on transcription by RNAPII in Schizosaccharomyces pombe using four genome-wide approaches: ChIP-seq, NET-seq, 4tU-seq, and RNA-seq. Our results demonstrate that, in the absence of Spt5, RNAPII accumulates at a high level over the first ~500 bp of transcription units, suggesting that Spt5 is globally required to elongate past a barrier to transcription. This possibility is strongly supported by results showing that Spt5 is required for a normal level of RNA synthesis. In addition to these effects on sense-strand transcription, Spt5 depletion results in widespread convergent antisense transcription that initiates at approximately the same position as the sense-strand barrier. While the role of these antisense transcripts is unknown, the two that were tested control the distribution of RNAPII. Our results also show that Spt5 represses divergent antisense transcription, explaining why it has not been previously observed in S. pombe. Taken together, our results reveal a global and critical role for Spt5 in multiple classes of transcription by RNAPII.
Project description:Many proteins associate with elongating RNA polymerase II (RNAPII), although the functions of most of them are still not well understood. Spt5 is an essential transcription elongation factor that binds directly to RNA polymerase and is conserved in prokaryotes, archaea, and eukaryotes1. In eukaryotes, evidence suggests that Spt5 functions in transcription elongation by both RNA polymerases I and II, mRNA capping, mRNA splicing, and mRNA 3’ end formation2. However, the genome-wide requirement for Spt5 in transcription has not been extensively studied. To address this issue, we have comprehensively analyzed the consequences of Spt5 depletion on transcription by RNAPII in Schizosaccharomyces pombe using four genome-wide approaches: ChIP-seq, NET-seq, 4tU-seq, and RNA-seq. Our results demonstrate that, in the absence of Spt5, RNAPII accumulates at a high level over the first ~500 bp of transcription units, suggesting that Spt5 is globally required to elongate past a barrier to transcription. This possibility is strongly supported by results showing that Spt5 is required for a normal level of RNA synthesis. In addition to these effects on sense-strand transcription, Spt5 depletion results in widespread convergent antisense transcription that initiates at approximately the same position as the sense-strand barrier. While the role of these antisense transcripts is unknown, the two that were tested control the distribution of RNAPII. Our results also show that Spt5 represses divergent antisense transcription, explaining why it has not been previously observed in S. pombe. Taken together, our results reveal a global and critical role for Spt5 in multiple classes of transcription by RNAPII.
Project description:Spt5 is an essential and conserved factor that functions in transcription and co-transcriptional processes. However, many aspects of the requirement for Spt5 in transcription are poorly understood. We have analyzed the consequences of Spt5 depletion in Schizosaccharomyces pombe using four genome-wide approaches. Our results demonstrate that Spt5 is crucial for a normal rate of RNA synthesis and distribution of RNAPII over transcription units. In the absence of Spt5, RNAPII localization changes dramatically, with reduced levels and a relative accumulation over the first ∼500 bp, suggesting that Spt5 is required for transcription past a barrier. Spt5 depletion also results in widespread antisense transcription initiating within this barrier region. Deletions of this region alter the distribution of RNAPII on the sense strand, suggesting that the barrier observed after Spt5 depletion is normally a site at which Spt5 stimulates elongation. Our results reveal a global requirement for Spt5 in transcription elongation.
Project description:Initially discovered by genetic screens in budding yeast, SPT5 and its partner SPT4 form a stable complex known as DSIF in metazoa, which plays pleiotropic roles in multiple steps of transcription. SPT5 is the most conserved transcription elongation factor, being found in all three domains of life; however, its structure has evolved to include new domains and associated posttranslational modifications. These gained features have expanded transcriptional functions of SPT5, likely to meet the demand for increasingly complex regulation of transcription in higher organisms. This review discusses the pleiotropic roles of SPT5 in transcription, including RNA polymerase II (Pol II) stabilization, enhancer activation, Pol II pausing and its release, elongation, and termination, with a focus on the most recent progress of SPT5 functions in regulating metazoan transcription.
Project description:Insulators or chromatin boundary elements are defined by their ability to block transcriptional activation by an enhancer and to prevent the spread of active or silenced chromatin. Recent studies have increasingly suggested that insulator proteins play a role in large-scale genome organization. To better understand insulator function on the global scale, we conducted a genome-wide analysis of the binding sites for the insulator protein CTCF in Drosophila by Chromatin Immunoprecipitation (ChIP) followed by a tiling-array analysis. The analysis revealed CTCF binding to many known domain boundaries within the Abd-B gene of the BX-C including previously characterized Fab-8 and MCP insulators, and the Fab-6 region. Based on this finding, we characterized the Fab-6 insulator element. In genome-wide analysis, we found that dCTCF-binding sites are often situated between closely positioned gene promoters, consistent with the role of CTCF as an insulator protein. Importantly, CTCF tends to bind gene promoters just upstream of transcription start sites, in contrast to the predicted binding sites of the insulator protein Su(Hw). These findings suggest that CTCF plays more active roles in regulating gene activity and it functions differently from other insulator proteins in organizing the Drosophila genome.
Project description:The vast majority of annotated transcripts in bacteria are mRNAs. Here we identify ~1,000 antisense transcripts in the model bacterium Escherichia coli. We propose that these transcripts are generated by promiscuous transcription initiation within genes and that many of them regulate expression of the overlapping gene.