N6-methyladenosine dynamics during early vertebrate embryogenesis
Ontology highlight
ABSTRACT: Early vertebrate embryogenesis is characterized by extensive post-transcriptional regulation during the maternal-to-zygotic transition. The N6-methyladenosine (m6A) modifications on mRNA has been shown to affect both translation and stability of transcripts. Here we investigate the m6A topology during early vertebrate embryogenesis and its association with RNA stability, translation efficiency and effect on miR-430 degradation kinetics. Notably, we find a strong association of m6A with cytoplasmic polyadenylation and translational efficiency prior to zygotic genome activation. Genes required for zygotic genome activation such as nanog and pou5f3 display dynamic m6A levels. After zygotic genome activation m6A is associated with improved stability and dampens the effect of miR-430 mediated degradation. Through sequence analyses we identified enrichment of motifs for RNA binding proteins involved in translational regulation and RNA degradation. We propose a role for m6A in multiple mRNA regulatory mechanisms, for the first time in an in vivo system and improve our understanding of the combinatorial code behind the complex post transcriptional regulation of reprogramming during early vertebrate development.
ORGANISM(S): Danio rerio
PROVIDER: GSE89815 | GEO | 2017/05/01
SECONDARY ACCESSION(S): PRJNA353372
REPOSITORIES: GEO
ACCESS DATA