De-regulation of maize C4 photosynthetic development in a mesophyll cell defective mutant: Bundle sheath and Mesophyll
Ontology highlight
ABSTRACT: During Zea mays (maize) C4 differentiation, mesophyll (M) and bundle sheath (BS) cells accumulate distinct sets of photosynthetic enzymes, with very low photosystem II (PSII) content in BS chloroplasts. Consequently, there is little linear electron transport in the BS and ATP is generated by cyclic electron flow. In contrast, M thylakoids are very similar to those of C3 plants and produce the ATP and NADPH that drive metabolic activities. Regulation of this differentiation process is poorly understood but involves expression and coordination of nuclear and plastid genomes. Here, we identify a recessive allele of the maize Hcf136 homologue that in Arabidopsis thaliana functions as a PSII stability or assembly factor located in the thylakoid lumen. Proteome analysis of the thylakoids and electron microscopy reveal that Zm hcf136 lacks PSII complexes and grana thylakoids in M chloroplasts, consistent with the previously defined Arabidopsis function. Interestingly, hcf136 is also defective in processing the full-length psbB-psbT-psbH-petB-petD polycistron specifically in M chloroplasts. To determine whether the loss of PSII in M cells affects C4 differentiation, we performed cell-type specific transcript analysis of hcf136 and wild-type seedlings. The results indicate that M and BS cells respond uniquely to the loss of PSII, with little overlap in gene expression changes between data sets. These results are discussed in the context of signals that may drive differential gene expression in C4 photosynthesis. Keywords: cell type comparison
ORGANISM(S): Zea mays
PROVIDER: GSE9698 | GEO | 2008/02/01
SECONDARY ACCESSION(S): PRJNA103601
REPOSITORIES: GEO
ACCESS DATA