Project description:Visium (10x Genomics) spatially resolved transcriptomics data generated from normal and Idiopathic Pulmonary Fibrosis (IPF) lung parenchyma tissues collected from human donors. The fresh-frozen tissues that were analyzed were from four healthy control (HC) subjects and from four IPF patients. For each IPF patient, three different tissues were selected representing areas of mild (“B1”), moderate (“B2\") or severe (“B3”) fibrosis within the same donor, as determined by histological inspection of Hematoxylin and Eosin (H&E)-stained samples. Data from a total of 25 tissue sections, from 16 unique lung tissue blocks. The lung tissues were collected post-mortem (HC donors) or during lung transplant/resection (IPF patients) after obtaining informed consent. The study protocols were approved by the local human research ethics committee (HC: Lund, permit number Dnr 2016/317; IPF: Gothenburg, permit number 1026-15) and the samples are anonymized and cannot/should not be traced back to individual donors.
Project description:Lung tumors, as well as normal tumor-adjacent (NTA) tissue of non-small cell lung cancer (NSCLC) patients, were collected and subjected label-free quantitation shotgun proteomics in data-independent mode to identify differences between the tumors and adjacent tissue. By employing in-depth proteomics, we identified several pathways that are up- or downregulated in the tumors of non-small cell lung cancer patients.
Project description:Controlled recruitment of C-C Motif Chemokine Receptor 2 (CCR2)-positive monocytes into lung tissues is a crucial component of the host immune response to infections. Pathogenesis of cystic fibrosis (CF) lung remodeling, which ultimately leads to respiratory failure, is caused by chronic infections and neutrophilic inflammation, but the immune mechanisms are not fully understood. Here, we show that lung explants from CF patients with severe disease contain abundant CCR2-positive classical monocytes in the submucosal tissues of small airways and areas of tissue remodeling. Recapitulating human CF lung remodeling by repeatedly exposing CF mice to lipopolysaccharide (LPS), and by using genetic ablation or pharmacological inhibition of CCR2, we demonstrate that CCR2-dependent accumulation of classical monocytes and monocyte-derived macrophages drive lung neutrophilia, pathogenic Transforming Growth Factor Beta signaling and irreversible lung tissue scarring. Importantly, six weeks after cessation of LPS exposure, the lungs of CF mice still have elevated numbers of pro-inflammatory monocytes with higher expression of neutrophil chemoattractants, thus perpetuating recruitment of neutrophils and lung tissue damage. Lastly, we demonstrate that the increased accumulation of immune cells to inflamed lungs is driven by dysfunctional CF transmembrane conductance regulator (CFTR) expression in CCR2-positive cells. These studies identify uncontrolled recruitment of CCR2-positive cells as a key driver of lung remodeling, and as a novel therapeutic target for patients with CF for which lung hyper-inflammation and tissue damage remain an issue despite recent advances in CFTR-specific therapeutics. Keywords: monocytes; macrophages; neutrophils; chronic lung inflammation; lipopolysaccharide; recruitment; CC-motif chemokine receptor 2; transforming growth factor beta; lung remodeling; cystic fibrosis
Project description:The mechanisms and molecular pathways underlying interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches were used to identify perturbed networks in these disease states to gain a better understanding of the underlying mechanisms of disease. Through profiling genes and miRNAs, we found subsets of genes and miRNAs that distinguish different disease stages, ILDs from controls, and idiopathic pulmonary fibrosis (IPF) from non-specific interstitial pneumonitis (NSIP). Traditional pathway analysis revealed several disease-associated modules involving genes from the TGF-beta, Wnt, focal adhesion and smooth muscle actin pathways that may be involved in advancing fibrosis. A comprehensively integrative approach was used to construct a global gene regulatory network based on the perturbation of key regulatory elements, transcriptional factors and miRNAs. The data also demonstrated that several subnetworks were significantly associated with key molecules involved in the diseases. We present a broad overview of the disease at a molecular level and discuss several possibly key regulatory molecular circuits that could play central roles in facilitating the progression of ILDs. Lung tissue samples from 23 patients with IPF or related disorders were obtained from the Lung Tissue Research Consortium (www.ltrcpublic.org). 11 samples came from patients who had been diagnosed with usual interstitial pneumonia/ idiopathic pulmonary fibrosis (UIP/IPF), 5 samples came from patients with non-specific interstitial pneumonia (NSIP), the remaining from patients with uncharacterized fibrosis and from patients with other ILD variants. B. Biopsies from uninvolved lung tissue from lung cancer patients (5 samples) and from one lung transplant patient were used as controls for comparison with the ILD samples.
Project description:The mechanisms and molecular pathways underlying interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches were used to identify perturbed networks in these disease states to gain a better understanding of the underlying mechanisms of disease. Through profiling genes and miRNAs, we found subsets of genes and miRNAs that distinguish different disease stages, ILDs from controls, and idiopathic pulmonary fibrosis (IPF) from non-specific interstitial pneumonitis (NSIP). Traditional pathway analysis revealed several disease-associated modules involving genes from the TGF-beta, Wnt, focal adhesion and smooth muscle actin pathways that may be involved in advancing fibrosis. A comprehensively integrative approach was used to construct a global gene regulatory network based on the perturbation of key regulatory elements, transcriptional factors and miRNAs. The data also demonstrated that several subnetworks were significantly associated with key molecules involved in the diseases. We present a broad overview of the disease at a molecular level and discuss several possibly key regulatory molecular circuits that could play central roles in facilitating the progression of ILDs. Lung tissue samples from thirty patients with IPF or related disorders were obtained from the Lung Tissue Research Consortium (www.ltrcpublic.org). Ten samples came from patients who had been diagnosed with usual interstitial pneumonia/ idiopathic pulmonary fibrosis (UIP/IPF), nine samples came from patients with non-specific interstitial pneumonia (NSIP), four from patients with uncharacterized fibrosis, and the remaining samples came from patients with other ILD variants. Biopsies from uninvolved lung tissue from lung cancer patients (5 samples) and from one lung transplant patient were used as controls for comparison with the ILD samples.