Project description:Intercellular signal indole and its derivative hydroxyindoles inhibit Escherichia coli biofilm and diminish Pseudomonas aeruginosa virulence. However, indole and bacterial indole derivatives were unstable in microbial community due to the widespread of diverse oxygenases that could quickly degrade them. Hence, we sought to identify novel non-toxic, stable, and potent indole derivatives from plant sources for inhibiting biofilm formation of E. coli O157:H7 and P. aeruginosa PAO1. Here, plant auxin 3-indolylacetonitrile (IAN) was found to inhibit biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth. IAN inhibited biofilms more effectively than indole for both E. coli and P. aeruginosa. Additionally, IAN decreased the production of virulence factor pyocyanin in P. aeruginosa. DNA microarray analysis indicated that IAN repressed genes involved in curli formation and glycerol metabolism, while IAN induced indole-related genes and prophage genes in E. coli. It appears that IAN inhibits biofilm formation of E. coli by reducing curli formation and inducing indole production. Furthermore, unlike bacterial indole derivatives, plant-originated IAN was stable in the presence of either E. coli or P. aeruginosa.
Project description:Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents. To identify non-toxic biofilm inhibitors for enterohemorrhagic Escherichia coli O157:H7, indole-3-acetaldehyde was used and reduced E. coli O157:H7 biofilm formation. Global transcriptome analyses revealed that indole-3-acetaldehyde most repressed two curli operons, csgBAC and csgDEFG, and induced tryptophanase (tnaAB) in E. coli O157:H7 biofilm cells. Electron microscopy showed that indole-3-acetaldehyde reduced curli production in E. coli O157:H7. Together, this study shows that Actinomycetales are an important resource of biofilm inhibitors as well as antibiotics.
Project description:Laboratory adaptive evolution experiments were conducted using serial passage of E. coli in M9 minimal medium supplemented with either 2 g/L of lactate for 60 days or 2 g/L of glycerol for 44 days. 7 parallel evolution strains were generated for growth on lactate and 7 parallel evolution strains were generated for growth on glycerol. Affymetrix arrays were used to study the time-course change in gene expression from unevolved E. coli (day 0) to a midpoint evolved strain (day 20) and evolutionary endpoints
Project description:This SuperSeries is composed of the following subset Series: GSE17276: Transcriptional profiling of an evolved polymorphism in E. coli GSE17277: Array comparative genome hybridization of an evolved polymorphism in E. coli Refer to individual Series
Project description:The Escherichia coli quorum-sensing regulator, SdiA, belongs to the LuxR family of transcriptional regulators and is responsible for detecting signals from other bacteria. Previously we found that SdiA is necessary for E. coli to control its biofilm formation with indole just as SdiA is necessary for E. coli to alter its biofilm formation in the presence of N-acylhomoserine lactones (AHLs). Here we engineered SdiA by random mutagenesis to further control biofilm formation in the presence of indole and AHLs. After screening of 477?? mutants with indole and two AHLs (N-butyryl-DL-homoserine lactone, and N-(3-oxooctanoyl)-L-homoserine lactone, C6HSL), five SdiA variants were obtained that altered biofilm with and without signals of indole and AHLs. Two truncation variants (1E11 and 14C3) lacking the C-terminal DNA-binding domain of SdiA showed the reduction of biofilm formation by 5-fold and 10-fold in LB and LB glu, respectively. DNA microarrays show that the evolved SdiA (1E11) compared to wild-type SdiA influences indole synthesis genes, AI-2 uptake genes, acid-resistance genes, motility related genes, cold-shock protein genes, and several regulatory protein genes. Corroborating DNA microarrays, SdiA variants produced various amounts of indole which led to different survivals in low pH and influenced swimming motility and final cell density. Also, an AHL sensitive variant (2D10) 2-fold increased biofilm formation in the presence of C6HSL, while another variant (6B12) lowered biofilm formation in the presence of C6HSL. Hence, the results clearly showed that mutation of SdiA itself directly controls biofilm formation and SdiA variants could be further recognized by the inter-species signal AHLs. This is the first random protein engineering to control biofilm formation.
Project description:Two lineages of enterohemorrhagic (EHEC) Escherichia coli O157:H7 (EDL933, Stx1+ and Stx2+) and 86-24 (Stx2+) were investigated in regards to biofilm formation on an abiotic surface. Strikingly, EDL933 strain formed a robust biofilm while 86-24 strain formed no biofilm on either a polystyrene plate or a polyethylene tube. To identify the genetic mechanisms of different biofilm formation in two EHEC strains, DNA microarrays were first performed and phenotypic assays were followed. In the comparison of the EDL933 strain versus 86-24 strain, genes (csgBAC and csgDEFG) involved in curli biosynthesis were significantly induced while genes (trpLEDCB and mtr) involved in indole signaling were repressed. Additionally, a dozen of phage genes were differentially present between two strains. Curli assays using a Congo red plate and scanning electron microscopy corroborate the microarray data as the EDL 933 strain produces a large amount of curli, while 86-24 forms much less curli. Also, the indole production in the EDL933 was 2-times lower than that of 86-24. It was known that curli formation positively regulates and indole negatively regulates biofilm formation of EHEC. Hence, it appears that less curli formation and high indole production in the 86-24 strain are majorly responsible for no biofilm formation.
Project description:Transcriptional profiles of Escherichia coli MG1655 in mixed culture with Pseudomonas aeruginosa PAO1 showed a number of E. coli genes to be upregulated including purA-F and other genes associated with purine synthesis. In contrast, genes associated with pyrimidine synthesis were unaffected. Competition experiments in both planktonic and biofilm cultures, using three purine synthesis mutants, purD, purH, and purT showed little difference in E. coli survival from the parent strain. As purines are components of the cell signals, cAMP and c-di-GMP, we conducted competition experiments with E. coli mutants lacking adenylate cyclase (cyaA), cAMP phosphodiesterase (cpdA), and the catabolite receptor protein (crp), as well as ydeH, an uncharacterized gene that has been associated with c-di-GMP synthesis. Survival of the cyaA and crp mutants during co-culture were significantly less than the parent strain. Supplementation of the media with 1mM cAMP could restore survival of the cyaA mutant but not the crp mutant. In contrast, survival of the cpdA mutant was similar to the parent strain. Survival of the ydeH mutant was moderately less than the parent, suggesting that cAMP has more impact on E. coli mixed culture growth than c-di-GMP. Addition of 1 mM indole restored the survival of both the cyaA and crp mutations. Mutants in genes for tryptophan synthesis (trpE) and indole production (tnaA) showed a loss of competition and recovery through indole supplementation, comparable to the cyaA and crp mutants. Overall, these results suggest indole and cAMP as major contributing factors to E. coli growth in mixed culture.
Project description:Although fluorine is abundant in the earth’s crust, it is scarcely found in biomolecules. Adaptive laboratory evolution (ALE) experiments were conducted to introduce organofluorine into living microorganisms. By cultivating Escherichia coli with fluorinated indole analogs, microbial cells evolved that relinquished their dependence on indole and are instead capable of utilizing either 6-fluoroindole (6Fi) or 7-fluoroindole (7Fi) for growth (TrpS-catalyzed in-situ conversion of fluoroindole into fluorotryptophan (FTrp) and TrpRS-catalyzed incorporation of FTrp in context of protein biosynthesis). Consistent and complete adaptation of microbial populations was achieved and the quantitative proteome-wide replacement of Trp by either 6FTrp or 7FTrp was confirmed by nano-LC-MSMS. The dataset comprises the ancestral strain TUB00, two positive controls W-TUB165 and Ind-TUB165 (adapted to grow on tryptophan and indole), three 6Fi adapted lineages 6TUB128-OC, 6TUB165-MB4, 6TUB165-MB3 and two 7Fi adapted lineages 7TUB165-OC and 7TUB165-MB.
Project description:Bulk RNA-sequencing was performed on E. coli BL21 (DE3) evolved at 25°C in pH 9 terrific broth media buffered with Tris-HCl (pH 9). The evolved E. coli was characterised and compared to the parent strain during protein expression; the strains were actively grown and compared for gene expression at pH 7 and pH 9 in terrific broth media.
Project description:Laboratory adaptive evolution experiments were conducted using serial passage of E. coli in M9 minimal medium supplemented with either 2 g/L of lactate for 60 days or 2 g/L of glycerol for 44 days. 7 parallel evolution strains were generated for growth on lactate and 7 parallel evolution strains were generated for growth on glycerol. Affymetrix arrays were used to study the time-course change in gene expression from unevolved E. coli (day 0) to a midpoint evolved strain (day 20) and evolutionary endpoints Biological replicate arrays were conducted for each of the time points tested for the different evolution strains