Phosphorylation state and protein levels measured by imaging in BRAF(V600E/D) melanoma cell lines following treatment with combinations of two compounds (immunofluorescence dataset 1 of 4)
Project description:Both targeted inhibition of oncogenic driver mutations and immune-based therapies show efficacy in treatment of patients with metastatic cancer but responses are either short-lived or incompletely effective. Oncogene inhibition can augment the efficacy of immune-based therapy but mechanisms by which these two interventions might cooperate are incompletely resolved. Using a novel transplantable BRAFV600E-mutant murine melanoma model (SB-3123), we explore potential mechanisms of synergy between the selective BRAFV600E inhibitor vemurafenib and adoptive cell transfer (ACT)-based immunotherapy. We found that vemurafenib cooperated with ACT to delay melanoma progression but surprisingly did not enhance tumor infiltration or effector function of endogenous or adoptively transferred CD8+ T cells as previously observed. Instead, we found that the T cell cytokines IFN-gamma and TNF-alpha synergized with vemurafenib to induce cell cycle arrest of tumor cells in vitro. This was recapitulated in vivo as continuous vemurafenib administration was required to delay melanoma progression following ACT. The unexpected finding that immune cytokines synergize with oncogene inhibitors to induce growth arrest have major implications for understanding cancer biology at the intersection of oncogenic and immune signaling and provides a basis for design of combinatorial therapeutic approaches for patients with metastatic cancer. SB-3123p cells were treated in triplicate (biological replicates) under the following conditions for 96 hours: DMSO vehicle (control) (n=3); mouse IFNgamma (2.4 ng/ml) and mouse TNFalpha (0.24 ng/mL) (n=3); Vemurafenib (1uM) (n=3); and mouse IFNgamma (2.4 ng/ml), mouse TNFalpah (0.24 ng/mL) and Vemurafenib (1uM) (n=3).
Project description:Whole-exome sequencing was performed on DNA samples extracted from seven melanoma cell lines resistant to either vemurafenib (BRAF V600E inhibitor) or trametinib (MEK1/2 inhibitor). The aim of the experiment was to search for genetic alterations responsible for phenotypic diversity of melanoma cell lines reported at the level of cell morphology, activity of signaling pathways essential for melanoma development and progression, and resistance to targeted therapeutics.
Project description:Whole-exome sequencing was performed on DNA samples extracted from seven melanoma cell lines resistant to either vemurafenib (BRAF V600E inhibitor) or trametinib (MEK1/2 inhibitor). The aim of the experiment was to search for genetic alterations responsible for phenotypic diversity of melanoma cell lines reported at the level of cell morphology, activity of signaling pathways essential for melanoma development and progression, and resistance to targeted therapeutics.
Project description:Whole-exome sequencing was performed on DNA sample extracted from one melanoma cell line resistant to vemurafenib (BRAF V600E inhibitor). The aim of the experiment was to search for genetic alterations responsible for phenotypic diversity of melanoma cell lines reported at the level of cell morphology, activity of signaling pathways essential for melanoma development and progression, and resistance to targeted therapeutics.
Project description:To gain deeper insight into the mechanism of toxicity, it is important to identify and characterize miRNAs profiles involved in responses to specific classes of toxicants in conjunction with their impact on gene expression levels. However, few reports have described the effects of toxicants on miRNA expression profiles. Taking into account the prominent role of miRNAs in cancer development, progression, cell cycle control, and proliferation-related processes, it is likely that miRNAs are involved in the toxic response induced by carcinogens. Polycyclic aromatic hydrocarbons (PAHs) are a well-characterized class of human carcinogens. In the present study, we documented the different expression profiles of miRNAs in environmental carcinogen-exposed HepG2 cells by miRNA microarray analysis. To evaluate the change in miRNA expression levels, human hepatocellular carcinoma (HepG2) cells were exposed to two PAHs (benzo[a]anthracene, benzo[k]fluoranthene) for 48 h. miRNA expression analysis was conducted using a 8x16k human miRNA microarray (Agilent Technologies, USA).