Protein levels measured by imaging in BRAF(V600E/D) melanoma cell lines following treatment with Vemurafenib in combination with chromatin-targeting compounds (immunofluorescence dataset 3 of 4)
Project description:Both targeted inhibition of oncogenic driver mutations and immune-based therapies show efficacy in treatment of patients with metastatic cancer but responses are either short-lived or incompletely effective. Oncogene inhibition can augment the efficacy of immune-based therapy but mechanisms by which these two interventions might cooperate are incompletely resolved. Using a novel transplantable BRAFV600E-mutant murine melanoma model (SB-3123), we explore potential mechanisms of synergy between the selective BRAFV600E inhibitor vemurafenib and adoptive cell transfer (ACT)-based immunotherapy. We found that vemurafenib cooperated with ACT to delay melanoma progression but surprisingly did not enhance tumor infiltration or effector function of endogenous or adoptively transferred CD8+ T cells as previously observed. Instead, we found that the T cell cytokines IFN-gamma and TNF-alpha synergized with vemurafenib to induce cell cycle arrest of tumor cells in vitro. This was recapitulated in vivo as continuous vemurafenib administration was required to delay melanoma progression following ACT. The unexpected finding that immune cytokines synergize with oncogene inhibitors to induce growth arrest have major implications for understanding cancer biology at the intersection of oncogenic and immune signaling and provides a basis for design of combinatorial therapeutic approaches for patients with metastatic cancer. SB-3123p cells were treated in triplicate (biological replicates) under the following conditions for 96 hours: DMSO vehicle (control) (n=3); mouse IFNgamma (2.4 ng/ml) and mouse TNFalpha (0.24 ng/mL) (n=3); Vemurafenib (1uM) (n=3); and mouse IFNgamma (2.4 ng/ml), mouse TNFalpah (0.24 ng/mL) and Vemurafenib (1uM) (n=3).
Project description:Whole-exome sequencing was performed on DNA samples extracted from seven melanoma cell lines resistant to either vemurafenib (BRAF V600E inhibitor) or trametinib (MEK1/2 inhibitor). The aim of the experiment was to search for genetic alterations responsible for phenotypic diversity of melanoma cell lines reported at the level of cell morphology, activity of signaling pathways essential for melanoma development and progression, and resistance to targeted therapeutics.
Project description:Whole-exome sequencing was performed on DNA samples extracted from seven melanoma cell lines resistant to either vemurafenib (BRAF V600E inhibitor) or trametinib (MEK1/2 inhibitor). The aim of the experiment was to search for genetic alterations responsible for phenotypic diversity of melanoma cell lines reported at the level of cell morphology, activity of signaling pathways essential for melanoma development and progression, and resistance to targeted therapeutics.
Project description:Whole-exome sequencing was performed on DNA sample extracted from one melanoma cell line resistant to vemurafenib (BRAF V600E inhibitor). The aim of the experiment was to search for genetic alterations responsible for phenotypic diversity of melanoma cell lines reported at the level of cell morphology, activity of signaling pathways essential for melanoma development and progression, and resistance to targeted therapeutics.
Project description:Vemurafenib is a BRAF inhibitor with specificity for the most common BRAF mutant encountered in melanomas (BRAFV600E). Vemurafenib suppresses the proliferation of BRAF mutant human melanoma cells by suppressing downstream activation of the MEK/ERK mitogen activated protein kinases. We used microarrays to examine the transcriptional response of a vemurafenib-sensitive BRAFV600E human melanoma cell line (A375) to vemurafenib in order to further delineate the mechanisms by which BRAFV600E drives cell proliferation and energy metabolism in human melanoma. BRAFV600E A375 human melanoma cells were treated with vehicle (0.1% DMSO) or 10 uM vemurafenib for 24 h after which total RNA was extracted. Cells were prepared and RNA was extracted in 3 separate batches (three different cell stocks on three separate days) providing three independent replicates (n=3). Paired replicates (prepared from the same stock of cells on the same day) are denoted by A, B and C.