Proteomics

Dataset Information

0

Fast and accurate bacterial species identification in biological samples using LC-MS/MS mass spectrometry and machine learning (DDA dataset)


ABSTRACT: We have developed a new strategy for identifying bacterial species in biological samples using specific LC-MS/MS peptidic signatures. In the first training step, deep proteome coverage of bacteria of interest is obtained in Data Independent Acquisition (DIA) mode, followed by the use of machine learning to define the peptides the most susceptible to distinguish each bacterial species from the others. Then, in the second step, this peptidic signature is monitored in biological samples using targeted proteomics. This method, which allows the bacterial identification from clinical specimens in less than 4h, has been applied to 15 species representing 84% of all Urinary Tract Infections (UTI). This dataset contains all the DDA files used to create bacterial spectral libraries prior to DIA analyses.

INSTRUMENT(S): Orbitrap Fusion ETD

ORGANISM(S): Citrobacter Freundii (ncbitaxon:546) Streptococcus Agalactiae 2603v/r (ncbitaxon:208435) Staphylococcus Aureus Subsp. Aureus Nctc 8325 (ncbitaxon:93061) Streptococcus Mitis (ncbitaxon:28037) Klebsiella Oxytoca (ncbitaxon:571) Staphylococcus Epidermidis Atcc 12228 (ncbitaxon:176280) Enterococcus Faecalis V583 (ncbitaxon:226185) Enterobacter Aerogenes Kctc 2190 (ncbitaxon:1028307) Proteus Mirabilis (ncbitaxon:584) Escherichia Coli K-12 (ncbitaxon:83333) Enterobacter Cloacae (ncbitaxon:550) Klebsiella Pneumoniae Subsp. Pneumoniae Mgh 78578 (ncbitaxon:272620) Pseudomonas Aeruginosa Pao1 (ncbitaxon:208964) Staphylococcus Saprophyticus Subsp. Saprophyticus Atcc 15305 (ncbitaxon:342451) Staphylococcus Haemolyticus Jcsc1435 (ncbitaxon:279808)

SUBMITTER: Arnaud Droit  

PROVIDER: MSV000083784 | MassIVE | Thu May 16 08:14:00 BST 2019

SECONDARY ACCESSION(S): PXD013885

REPOSITORIES: MassIVE

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1
altmetric image

Publications

Fast and Accurate Bacterial Species Identification in Urine Specimens Using LC-MS/MS Mass Spectrometry and Machine Learning.

Roux-Dalvai Florence F   Gotti Clarisse C   Leclercq Mickaël M   Hélie Marie-Claude MC   Boissinot Maurice M   Arrey Tabiwang N TN   Dauly Claire C   Fournier Frédéric F   Kelly Isabelle I   Marcoux Judith J   Bestman-Smith Julie J   Bergeron Michel G MG   Droit Arnaud A  

Molecular & cellular proteomics : MCP 20191004 12


Fast identification of microbial species in clinical samples is essential to provide an appropriate antibiotherapy to the patient and reduce the prescription of broad-spectrum antimicrobials leading to antibioresistances. MALDI-TOF-MS technology has become a tool of choice for microbial identification but has several drawbacks: it requires a long step of bacterial culture before analysis (≥24 h), has a low specificity and is not quantitative. We developed a new strategy for identifying bacterial  ...[more]

Similar Datasets

2019-05-16 | MSV000083793 | MassIVE
| S-EPMC6885708 | biostudies-literature
2022-05-24 | GSE193196 | GEO
2022-05-24 | GSE193129 | GEO
2021-08-20 | PXD021012 | JPOST Repository
| S-EPMC2810657 | biostudies-literature
| S-EPMC4873735 | biostudies-literature
| S-EPMC4479612 | biostudies-other
| S-EPMC7064611 | biostudies-literature
2023-02-03 | MSV000091202 | MassIVE