Project description:This entry contains the proteomic files from a data set of RNAs, proteins, metabolites and lipids analyzed from the same staged samples of S. cerevisiae cells across the cell cycle. Actively growing (un-arrested) diploid cells were collected by elutriation as 8 distinct size pools across the cell cycle in triplicate. Yeast in these 24 aliquots were lysed and soluble and insoluble proteins were prepared for shotgun LC-MS/MS mass spectrometry analysis.
Project description:For the first time in any system, we generated experiment-matched datasets of the levels of RNAs, proteins, metabolites, and lipids from un-arrested, growing, and synchronously dividing yeast cells.
Project description:Cell-cycle transcript dynamics from two species of wild-type budding yeast growing at 30 degrees Celsius in rich media: Saccharomyces cerevisiae (BF264-15D background) and Cryptococcus neoformans var. grubii (H99F background). We compared programs of cell-cycle-regulated genes between distantly related budding yeasts.
Project description:RNAi, a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast, Saccharomyces cerevisiae. We report that RNAi is present in other budding-yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate siRNAs, which mostly correspond to transposable elements and Y´ subtelomeric repeats. In S. castellii, RNAi mutants are viable but have excess Y´ mRNA levels. In S. cerevisiae, introducing Dicer and Argonaute of S. castellii restores RNAi, and the reconstituted pathway silences endogenous retrotransposons. These results identify a novel class of Dicer proteins, bring the tool of RNAi to the study of budding yeasts, and bring the tools of budding yeast to the study of RNAi.
Project description:RNAi, a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast, Saccharomyces cerevisiae. We report that RNAi is present in other budding-yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate siRNAs, which mostly correspond to transposable elements and YM-BM-4 subtelomeric repeats. In S. castellii, RNAi mutants are viable but have excess YM-BM-4 mRNA levels. In S. cerevisiae, introducing Dicer and Argonaute of S. castellii restores RNAi, and the reconstituted pathway silences endogenous retrotransposons. These results identify a novel class of Dicer proteins, bring the tool of RNAi to the study of budding yeasts, and bring the tools of budding yeast to the study of RNAi. Employ high-throughput sequencing of endogenous small RNAs from the budding yeasts Saccharomyces castellii, Kluyveromyces polysporus, Candida albicans, Saccharomyces cerevisiae, and Saccharomyces bayanus.
Project description:The packaging of DNA into nucleosomes influences the accessibility of underlying regulatory information. Nucleosome occupancy and positioning are best characterized in the budding yeast Saccharomyces cerevisiae, albeit in asynchronous cell populations or on individual promoters such as PHO5 and GAL1–10. Using FAIRE (formaldehyde-assisted isolation of regulatory elements) and whole-genome microarrays, we examined changes in nucleosome occupancy throughout the mitotic cell cycle in synchronized populations of S. cerevisiae. Perhaps surprisingly, nucleosome occupancy did not exhibit large, global variation between cell cycle phases. However, nucleosome occupancy at the promoters of cell cycle–regulated genes was reduced specifically at the cell cycle phase in which that gene exhibited peak expression, with the notable exception of S-phase genes. We present data that establish FAIRE as a high-throughput method for assaying nucleosome occupancy. For the first time in any system, nucleosome occupancy was mapped genome-wide throughout the cell cycle. Fluctuation of nucleosome occupancy at promoters of most cell cycle–regulated genes provides independent evidence that periodic expression of these genes is controlled mainly at the level of transcription. The promoters of G2/M genes are distinguished from other cell cycle promoters by an unusually low baseline nucleosome occupancy throughout the cell cycle. This observation, coupled with the maintenance throughout the cell cycle of the stereotypic nucleosome occupancy states between coding and non-coding loci, suggests that the largest component of variation in nucleosome occupancy is “hard wired,” perhaps at the level of DNA sequence. Keywords: FAIRE
Project description:We present Micrococcal Nuclease digestion maps of S. cerevisiae through the progression of the Yeast Metabolic Cycle. We demonstrate that nucleosome positions at many promoters are dynamic, and remodeling events at promoters have significant consequences with respect to gene expression. Examination of nucleosome positions and transcriptional output through metabolic oscillations in budding yeast.