Project description:TMT10plex-labeled, phospho-enriched, fractionated sample from the hippocampus of the NPC1-null mouse model was collected using nanoflow-LC-MS. Our goal is to identify signaling changes at an early time-point in the NPC1-null mouse model.
Project description:Purkinje cells (PC) of the cerebellum degenerate in adult mice with mutations in the Niemann-Pick type C (NPC) disease 1 (Npc1) gene. We subjected BALB/c Npc1+/+ and Npc1-/- mouse cerebella from an early and a later time point of PC degeneration to a genome-wide microarray gene expression analysis. We found general underrepresentation of PC-specific transcripts, consistent with PC loss, and elevated markers of microglia activation at the later time point. Experiment Overall Design: 12 BALB/c Npc1 mice of the two ages P21 and P49 and the two genotypes Npc1+/+ and Npc1-/- were used, 3 replicates for each age and genotype. The animals were of the same breed and lived under identical housing conditions. All except one animal were female. The animals were not further treated, but only sacrificed at P21 or P49.
Project description:Niemann-Pick Type C disease is an autosomal recessive neurodegenerative disorder with abnormal lipid storage as the major cellular pathologic hallmark. Genetic analyses have identified mutations in NPC1 gene in the great majority of cases, while mutations in NPC2 account for the remainders. Yet, little is known regarding the cellular mechanisms responsible for NPC pathogenesis, especially for neurodegeneration, which is the usual cause of death. To identify critical steps that could account for the pathological manifestations of the disease in one of the most affected brain structures, we performed global gene expression analysis in the cerebellum from three-week old Npc1+/+ and Npc1-/- mice with two different microarray platforms (Agilent and Illumina). Our results provide novel molecular insight regarding the mechanisms of pathogenesis in NPC disease and reveal potential new therapeutic targets. We performed global gene expression analysis in the cerebellum from three-week old Npc1+/+ and Npc1-/- mice with two different microarray platforms (Agilent and Illumina). Differentially-expressed genes identified by both microarray platforms were then subjected to KEGG pathway analysis. Expression of genes in six pathways was significantly altered in Npc1-/- mice; functionally, these signaling pathways belong to the following three categories: 1) steroid and terpenoid biosynthesis, 2) immune response, and 3) cell adhesion/motility. In addition, the expression of several proteins involved in lipid transport was significantly altered in Npc1-/- mice.
Project description:Niemann-Pick Type C disease is an autosomal recessive neurodegenerative disorder with abnormal lipid storage as the major cellular pathologic hallmark. Genetic analyses have identified mutations in NPC1 gene in the great majority of cases, while mutations in NPC2 account for the remainders. Yet, little is known regarding the cellular mechanisms responsible for NPC pathogenesis, especially for neurodegeneration, which is the usual cause of death. To identify critical steps that could account for the pathological manifestations of the disease in one of the most affected brain structures, we performed global gene expression analysis in the cerebellum from three-week old Npc1+/+ and Npc1-/- mice with two different microarray platforms (Agilent and Illumina). Our results provide novel molecular insight regarding the mechanisms of pathogenesis in NPC disease and reveal potential new therapeutic targets.
Project description:Purkinje cells (PC) of the cerebellum degenerate in adult mice with mutations in the Niemann-Pick type C (NPC) disease 1 (Npc1) gene. We subjected BALB/c Npc1+/+ and Npc1-/- mouse cerebella from an early and a later time point of PC degeneration to a genome-wide microarray gene expression analysis. We found general underrepresentation of PC-specific transcripts, consistent with PC loss, and elevated markers of microglia activation at the later time point. Keywords: Niemann-Pick type C, Purkinje cell degeneration
Project description:Niemann-Pick type C (NPC) disease is an inherited lysosomal storage disorder mainly driven by mutations in NPC1 gene, causing lipid accumulation within late endosomes/lysosomes, and resulting in progressive neurodegeneration. To study the effect of NPC1 deficiency on the innate immune system, we performed proteomics on bone-marrow derived macrophages (BMDMs) of NPC1 KO and WT mice. Without further treatment or activation, BMDMs of NPC1 KO mice showed alterations mainly related to cholesterol metabolism, which is in line with the intracellular cholesterol transport function of NPC1.
Project description:Niemann-Pick type C (NPC) disease is a rare neurodegenerative disorder mainly caused by autosomal recessive mutations in Npc1 which result in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is one of the prominent pathological features, consequences of NPC1 loss on microglial function and disease outcome remain largely unknown. Here, we provide an in-depth characterization of microglial proteomic signatures and phenotypes in an NPC1-deficient (Npc1-/-) murine model. We demonstrate that microglial defects, including enhanced phagocytosis and impaired lipid trafficking, occur early in the NPC pathological cascade and precede neuronal death. Compromised microglial function during Npc1-/- mouse development is reflected by enhanced synaptic pruning and deficient turnover of myelin. Accumulation of the undigested myelin occurs mainly within multi-vesicular bodies (MVBs) of Npc1-/- microglia and not within lysosomes. This is in agreement with the impairments in recycling of myelin into lipid droplets. Macrophages of NPC patients displayed similar molecular and functional alterations as murine Npc1-/- microglia, strengthening the role of NPC1 in immune homeostasis. Generated ex vivo assays using patient macrophages are novel promising clinical tools to monitor the progression and therapeutic efficacy in NPC patients.
Project description:We used microarrays to detail the global programme of gene expression underlying the disease progression in the mutant mice compared to their control littermates. We collected liver tissue from 1-, 3-, 5-, 7-, 9-, and 11-week-old Npc1+/+ and Npc1-/- mice (N=4), and some additional controls.