Teredinibacter sp. 2052S Quorum Sensing Untargeted Metabolomics
Ontology highlight
ABSTRACT: Raw LC-MS/MS data of crude extract of Teredinibacter sp. 2052S quorum sensing regulon
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=23f7062e523f49b18e13e4ca13715cfa
Project description:Raw LC-MS/MS data of crude extract of Teredinibacter sp. 2052S quorum sensing regulon
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=23f7062e523f49b18e13e4ca13715cfa
Project description:The quorum regulatory cascade is poorly characterized in Vibrio parahaemolyticus, in part because swarming and pathogenicity - the hallmark traits of the organism - are repressed by this scheme of gene control. As a consequence, many isolates appear silenced for quorum sensing via phase variation. In these studies, we examine a swarm proficient, virulent strain and find an altered function allele of the central quorum regulator luxO. We use this allele, which produces a constitutively active LuxO, to probe the upstream elements of the pathway and demonstrate their functionality for the first time. We find that the state of luxO affects expression of three small regulatory RNAS (Qrrs) and the activity of a translational fusion in opaR, the central output regulator. We use microarray profiling to determine the OpaR regulon, which was found to encompass ~5.2% of the genome. The quorum sensing proficient strain seems adapted for a sessile, community lifestyle; it is competent to uptake DNA, produces much capsular polysaccharide, has a high level of c-di-GMP, and strongly expresses one type six secretion system. Expressing the entire surface sensing regulon and numerous methyl accepting chemotaxis proteins, the quorum-disrupted cell type seems prepared for a mobile lifestyle. It is also cytotoxic to host cells in co-culture and expresses distinct type six as well as type three secretion systems. Thus, the scope and nature of the genes in the OpaR regulon provide many clues to the distinguishing traits of this Vibrio species as well as to the quite divergent survival strategies of the quorum ON/OFF phase variants
Project description:The quorum regulatory cascade is poorly characterized in Vibrio parahaemolyticus, in part because swarming and pathogenicity - the hallmark traits of the organism - are repressed by this scheme of gene control. As a consequence, many isolates appear silenced for quorum sensing via phase variation. In these studies, we examine a swarm proficient, virulent strain and find an altered function allele of the central quorum regulator luxO. We use this allele, which produces a constitutively active LuxO, to probe the upstream elements of the pathway and demonstrate their functionality for the first time. We find that the state of luxO affects expression of three small regulatory RNAS (Qrrs) and the activity of a translational fusion in opaR, the central output regulator. We use microarray profiling to determine the OpaR regulon, which was found to encompass ~5.2% of the genome. The quorum sensing proficient strain seems adapted for a sessile, community lifestyle; it is competent to uptake DNA, produces much capsular polysaccharide, has a high level of c-di-GMP, and strongly expresses one type six secretion system. Expressing the entire surface sensing regulon and numerous methyl accepting chemotaxis proteins, the quorum-disrupted cell type seems prepared for a mobile lifestyle. It is also cytotoxic to host cells in co-culture and expresses distinct type six as well as type three secretion systems. Thus, the scope and nature of the genes in the OpaR regulon provide many clues to the distinguishing traits of this Vibrio species as well as to the quite divergent survival strategies of the quorum ON/OFF phase variants The gene expression profiles of different strains of Vibrio parahaemolyticus cells grown on rich medium and compared using Affymetrix custom microarrays.
Project description:Quorum sensing controls hundreds of genes in vibrios required for cell density-specific behaviors, including bioluminescence, biofilm formation, competence, secretion, and motility. The central regulator in the quorum sensing pathway in vibrios is LuxR/HapR, which directly regulates >100 genes in the 625-gene regulon of Vibrio harveyi. Among these directly regulated genes are 15 transcription factors, which we predicted would comprise the second tier in the hierarchy of the quorum sensing regulon. To better study the mechanism of regulation of the quorum sensing network, we mapped all transcriptional start sites in V. harveyi using dRNA-seq. From these data, we determined the relative position of LuxR binding sites in the promoters of genes directly regulated by LuxR. We confirmed that LuxR directly binds to the promoters of the genes encoding transcription factors and quantified the extent of LuxR activation or repression of transcript levels. Finally, we determined the individual regulons for a subset of transcription factors that have not been previously studied. For regulators such as LysR- or AsnC/Lrp-type transcription factors, the regulons contained >100 genes that contained both unique and overlapping genes with the LuxR regulon. These data support a model in which LuxR directly regulates other transcription factors, which act to further alter the second tier of the gene expression cascade producing cell density behaviors in V. harveyi.
Project description:To better understand the role of QscR in P. aeruginosa gene regulation and to better understand the relationship between QscR, LasR and RhlR control of gene expression we used transcription profiling to identify a QscR-dependent regulon. Our analysis revealed that QscR activates some genes and represses others. Some of the repressed genes are not regulated by the LasR-I or RhlR-I systems while others are. The LasI-generated 3-oxododecanoyl-homoserine lactone serves as a signal molecule for QscR. Thus QscR appears to be an integral component of the P. aeruginosa quorum sensing circuitry. QscR uses the LasI-generated acyl-homoserine lactone signal and controls a specific regulon that overlaps with the already overlapping LasR and RhlR-dependent regulons. Keywords: Quorum sensing regulon, Direct activation
Project description:Genome-wide in planta determination of the quorum sensing regulon in Pectobacterium atrosepticum, through gene expression analysis of ExpI mutants using Agilent custom microarrays.
Project description:Many Gram-negative bacteria employ cell-to-cell communication mediated by N-acyl homoserine lactones (quorum sensing) to control expression of a wide range of genes including, but not limited to, genes encoding virulence factors. Outside the laboratory, the bacteria live in complex communities where signals may be perceived across species. We here present a newly found natural quorum sensing inhibitor, produced by the pseudomonads Pseudomonas sp. B13 and Pseudomonas reinekei MT1 as a blind end in the biodegradation of organochloride xenobiotics, which inhibits quorum sensing in P. aeruginosa in naturally occurring concentrations. This catabolite, 4-methylenebut-2-en-4-olide, also known as protoanemonin, has been reported to possess antibacterial properties, but seems to have dual functions. Using transcriptomics and proteomics, we found that protoanemonin significantly reduced expression of genes and secretion of proteins known to be under control of quorum sensing in P. aeruginosa. Moreover, we found activation of genes and gene products involved in iron starvation response. It is thus likely that inhibition of quorum sensing, as the production of antibiotics, is a phenomenon found in complex bacterial communities.
Project description:Many Gram-negative bacteria employ cell-to-cell communication mediated by N-acyl homoserine lactones (quorum sensing) to control expression of a wide range of genes including, but not limited to, genes encoding virulence factors. Outside the laboratory, the bacteria live in complex communities where signals may be perceived across species. We here present a newly found natural quorum sensing inhibitor, produced by the pseudomonads Pseudomonas sp. B13 and Pseudomonas reinekei MT1 as a blind end in the biodegradation of organochloride xenobiotics, which inhibits quorum sensing in P.M-bM-^@M-^Caeruginosa in naturally occurring concentrations. This catabolite, 4-methylenebut-2-en-4-olide, also known as protoanemonin, has been reported to possess antibacterial properties, but seems to have dual functions. Using transcriptomics and proteomics, we found that protoanemonin significantly reduced expression of genes and secretion of proteins known to be under control of quorum sensing in P.M-bM-^@M-^Caeruginosa. Moreover, we found activation of genes and gene products involved in iron starvation response. It is thus likely that inhibition of quorum sensing, as the production of antibiotics, is a phenomenon found in complex bacterial communities. Strain P. aeruginosa MPAO1 was cultivated under defined ABT medium. The orginal culture was divided in the early exponential phase into two parts. One was treated with 125M-NM-<M Protoanemonin and the other served as a control. The experiment was performed in duplicates.
Project description:Yersinia pestis, the etiological agent of plague, is able to sense cell density by quorum sensing. The function of quorum sensing in Y. pestis is not clear. Here, the process of quorum sensing was investigated by comparing transcript profiles when three quorum-sensing synthase genes are knocked out. Two strains, ∆pgm (pigmentation-negative) mutant R88 as treatment and quorum sensing null strain R115 with mutations (∆pgm, ∆ypeIR, ∆yspIR, and ∆luxS) as control, are used in this analysis.
Project description:Azoarcus sp. BH72 is able to communicate via cell density-dependent gene regulation. Here, the impact of cell-free conditioned culture supernatants, obtained from stationary phase Azoarcus wild type cultures, on gene expression was investigated determining changes in transcript profiles when early exponential aerobic cultures were incubated with cell-free culture supernatants for one and four hours. Bacterial communication via quorum sensing (QS) is involved in the regulation of several cellular mechanisms such as metabolic processes, microbe-host interactions or biofilm formation. The nitrogen-fixing model endophyte of grasses Azoarcus sp. strain BH72 shows density-dependent gene regulation in the absence of common hydrophobic autoinducers for pilA encoding the structural protein of type IV pili that are essential for plant colonization. Here, we used a transcriptomic approach to identify target genes differentially regulated under QS conditions in conditioned supernatants in comparison to standard growth conditions. Analysis used RNA from the early exponential growth phase as control samples for comparison to the quorum-sensing condition samples taken at one hour and four hours after incubation with cell-free culture supernatants.