GNPS Teredinibacter sp. 2052S Quorum Sensing Untargeted Metabolomics
Ontology highlight
ABSTRACT: Raw LC-MS/MS data of crude extract of Teredinibacter sp. 2052S quorum sensing regulon
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=23f7062e523f49b18e13e4ca13715cfa
Project description:Raw LC-MS/MS data of crude extract of Teredinibacter sp. 2052S quorum sensing regulon
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=23f7062e523f49b18e13e4ca13715cfa
Project description:Many Gram-negative bacteria employ cell-to-cell communication mediated by N-acyl homoserine lactones (quorum sensing) to control expression of a wide range of genes including, but not limited to, genes encoding virulence factors. Outside the laboratory, the bacteria live in complex communities where signals may be perceived across species. We here present a newly found natural quorum sensing inhibitor, produced by the pseudomonads Pseudomonas sp. B13 and Pseudomonas reinekei MT1 as a blind end in the biodegradation of organochloride xenobiotics, which inhibits quorum sensing in P. aeruginosa in naturally occurring concentrations. This catabolite, 4-methylenebut-2-en-4-olide, also known as protoanemonin, has been reported to possess antibacterial properties, but seems to have dual functions. Using transcriptomics and proteomics, we found that protoanemonin significantly reduced expression of genes and secretion of proteins known to be under control of quorum sensing in P. aeruginosa. Moreover, we found activation of genes and gene products involved in iron starvation response. It is thus likely that inhibition of quorum sensing, as the production of antibiotics, is a phenomenon found in complex bacterial communities.
Project description:Many Gram-negative bacteria employ cell-to-cell communication mediated by N-acyl homoserine lactones (quorum sensing) to control expression of a wide range of genes including, but not limited to, genes encoding virulence factors. Outside the laboratory, the bacteria live in complex communities where signals may be perceived across species. We here present a newly found natural quorum sensing inhibitor, produced by the pseudomonads Pseudomonas sp. B13 and Pseudomonas reinekei MT1 as a blind end in the biodegradation of organochloride xenobiotics, which inhibits quorum sensing in P.M-bM-^@M-^Caeruginosa in naturally occurring concentrations. This catabolite, 4-methylenebut-2-en-4-olide, also known as protoanemonin, has been reported to possess antibacterial properties, but seems to have dual functions. Using transcriptomics and proteomics, we found that protoanemonin significantly reduced expression of genes and secretion of proteins known to be under control of quorum sensing in P.M-bM-^@M-^Caeruginosa. Moreover, we found activation of genes and gene products involved in iron starvation response. It is thus likely that inhibition of quorum sensing, as the production of antibiotics, is a phenomenon found in complex bacterial communities. Strain P. aeruginosa MPAO1 was cultivated under defined ABT medium. The orginal culture was divided in the early exponential phase into two parts. One was treated with 125M-NM-<M Protoanemonin and the other served as a control. The experiment was performed in duplicates.
Project description:Yersinia pestis, the etiological agent of plague, is able to sense cell density by quorum sensing. The function of quorum sensing in Y. pestis is not clear. Here, the process of quorum sensing was investigated by comparing transcript profiles when three quorum-sensing synthase genes are knocked out. Two strains, ∆pgm (pigmentation-negative) mutant R88 as treatment and quorum sensing null strain R115 with mutations (∆pgm, ∆ypeIR, ∆yspIR, and ∆luxS) as control, are used in this analysis.
Project description:Yersinia pestis is the etiology of plague that is able to sense cell density by quorum sensing. The function of quorum sensing in Y.pestis is not clear. Here, the process of quorum sensing was investigated by comparing transcript profiles when three quorum sensing synthase genes are knocked out. Two strains, ∆pgm (pigmentation-negative) mutant R88 as treatment and 3XQS mutant with mutation (∆pgm, ∆ypeIR, ∆yspIR, and ∆luxS) R115 as control are used in this analysis.
Project description:Azoarcus sp. BH72 is able to communicate via cell density-dependent gene regulation. Here, the impact of cell-free conditioned culture supernatants, obtained from stationary phase Azoarcus wild type cultures, on gene expression was investigated determining changes in transcript profiles when early exponential aerobic cultures were incubated with cell-free culture supernatants for one and four hours. Bacterial communication via quorum sensing (QS) is involved in the regulation of several cellular mechanisms such as metabolic processes, microbe-host interactions or biofilm formation. The nitrogen-fixing model endophyte of grasses Azoarcus sp. strain BH72 shows density-dependent gene regulation in the absence of common hydrophobic autoinducers for pilA encoding the structural protein of type IV pili that are essential for plant colonization. Here, we used a transcriptomic approach to identify target genes differentially regulated under QS conditions in conditioned supernatants in comparison to standard growth conditions. Analysis used RNA from the early exponential growth phase as control samples for comparison to the quorum-sensing condition samples taken at one hour and four hours after incubation with cell-free culture supernatants.
Project description:The etiologic agent of bubonic plague, Yersinia pestis, senses cell density-dependent chemical signals to synchronize transcription between cells of the population in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was seen to be temperature conditional. Metabolism is unresponsive to quorum sensing regulation at mammalian body temperature, indicating a potential role for quorum sensing regulation of metabolism specifically during colonization of the flea vector. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged flea colonization, contributing to maintenance of plague in nature.
Project description:Yersinia pestis, the etiological agent of plague, is able to sense cell density by quorum sensing. The function of quorum sensing in Y. pestis is not clear. Here, the process of quorum sensing was investigated by comparing transcript profiles when three quorum-sensing synthase genes are knocked out. Two strains, M-bM-^HM-^Fpgm (pigmentation-negative) mutant R88 as treatment and quorum sensing null strain R115 with mutations (M-bM-^HM-^Fpgm, M-bM-^HM-^FypeIR, M-bM-^HM-^FyspIR, and M-bM-^HM-^FluxS) as control, are used in this analysis. Six independent RNA samples from R115 cultures were paired with six independent RNA samples from R88 cultures for hybridization to six two-color microarrays. A dye-swap design was used to remove the Cy5 and Cy3 dye bias.
Project description:Yersinia pestis, the etiological agent of plague, is able to sense cell density by quorum sensing. The function of quorum sensing in Y. pestis is not clear. Here, the process of quorum sensing was investigated by comparing transcript profiles when three quorum-sensing signals are added in. The strain ∆pgm (pigmentation-negative) mutant R88 was used as wild type. The three signals are AI-2, AHLs (N-(3-Oxooctanoyl)-L-homoserine lactone and N-Hexanoyl-DL-homoserine lactone).The control consisted of cells grown and treated under the same conditions without added signals.
Project description:Paenibacillus polymyxa is an agriculturally important plant growth promoting rhizobacterium (PGPR). Many Paenibacillus species are known to be engaged in complex bacteria-bacteria and bacteria-host interactions, which in other bacteria were shown to necessitate quorum sensing communication, but to date no quorum sensing systems have been described in Paenibacillus. Here we show that the type strain P. polymyxa ATCC 842 encodes at least 16 peptide-based communication systems. Each of these systems comprises a pro-peptide that is secreted to the growth medium and further processed to generate a mature short peptide. Each peptide has a cognate intracellular receptor of the RRNPP family, and we show that external addition of P. polymyxa communication peptides to the medium leads to reprogramming of the transcriptional response. We found that these quorum sensing systems are conserved across hundreds of species belonging to the Paenibacillaceae family, with some species encoding more than 25 different peptide-receptor pairs, representing a record number of quorum sensing systems encoded in a single genome.