Project description:Four dye swap replicates were performed with material derived 24 hours after stimulation of HUVECs with PMA and RMAC11 hybridised to material obtained at time 0 hours. The cDNAs used in this microarray were identified as part of collaborative project between the IMVS and Bionomics Limited. The project aims were to identify genes up-regulated during in vitro capillary tube formation as targets for angiogenesis-based therapeutics. Any requests for further information regarding the data generated from this collaboration should be directed to Bionomics Limited (www.bionomics.com.au) at the following address: Bionomics Limited 31 Dalgleish Street Thebarton, South Australia Australia, 5031 Phone: 618 8354 6104 Fax: 618 8354 6199 Email: busdev@bionomics.com.au Keywords = angiogenesis Keywords = HUVEC Keywords = in vitro Keywords = capillary tube Keywords: repeat sample
Project description:We performed brain MCAO/R modeling in mice, and extracted tissues at 0, 6, and 24 hours after modeling for MeRIP-seq analysis to explore the biological function of m6A in the ischemia-reperfusion process.
Project description:Specific plasma proteins serve as valuable markers for various diseases and are in many cases routinely measured in clinical laboratories by fully automated systems. For safe diagnostics and monitoring using these markers, it is important to ensure an analytical quality in line with clinical needs. For this purpose, information on the analytical and the biological variation of the measured plasma protein, also in the context of the discovery and validation of novel, disease protein biomarkers, is important, particularly in relation to for sample size calculations in clinical studies. Nevertheless, information on the biological variation of the majority of medium-to-high abundant plasma proteins is largely absent. In this study, we hypothesized that it is possible to generate data on inter-individual biological variation in combination with analytical variation of several hundred abundant plasma proteins, by applying LC-MS/MS in combination with relative quantification using isobaric tagging (10-plex TMT-labeling) to plasma samples. Using this analytical proteomic approach, we analyzed 42 plasma samples prepared in doublets, and estimated the technical, inter-individual biological, and total variation of 265 of the most abundant proteins present in human plasma thereby creating the prerequisites for power analysis and sample size determination in future clinical proteomics studies. Our results demonstrated that only five samples per group may provide sufficient statistical power for most of the analyzed proteins if relative changes in abundances >1.5-fold are expected. Seventeen of the measured proteins are present in the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Biological Variation Database, and demonstrated remarkably similar biological CV's to the corresponding CV's listed in the EFLM database suggesting that the generated proteomic determined variation knowledge is useful for large-scale determination of plasma protein variations.
Project description:In order to detect changes in liver tissue protein translation efficiency during liver regeneration, we performed sucrose density gradient centrifugation to separate translated (associated with polysome fraction), and non-translated (associated with sub-polysome fraction) transcripts in extracts from mouse livers 0 h and 24 h post-surgery. We found that compared to liver tissues before surgery, extracts from tissues 24 h post-surgery had significantly fewer transcripts associated with polysomes, suggesting a reduction in protein synthesis activity.
Project description:BACKGROUND:The presence of a wide range of bioactive organic pollutants in wastewater and municipal water sources is raising concerns about their potential effects on humans. Not surprisingly, various approaches are being explored that can efficiently degrade these persistent organic pollutants. Use of peroxidases has recently been recognized as a novel remediation approach that may have potential advantages over conventional degradation techniques. However, testing the abilities of different peroxidases to degrade diverse emerging pollutants is tedious and cumbersome. RESULTS:In the present study, we present a rapid and robust approach to easily test the degradability of 21 different emerging pollutants by five different peroxidases (soybean peroxidase, chloroperoxidase, lactoperoxidase, manganese peroxidase, and horseradish peroxidase) using an LC-MSMS approach. Furthermore, this approach was also used to examine the role of a redox mediator in these enzymatic degradation assays. Our results show that some of the organic pollutants can be easily degraded by all five of the peroxidases tested, whereas others are only degraded by a specific peroxidase (or when a redox mediator was present) and there are some that are completely resistant to degradation by any of the peroxidases tested (even in the presence of a redox mediator). The degradation of furosemide and trimethoprim by soybean peroxidase and chloroperoxidase, respectively, was investigated in detail by examining the transformation products generated during their degradation. Some of the products generated during enzymatic breakdown of these pollutants have been previously reported by others, however, we report many new transformation products. CONCLUSIONS:LC-MSMS approaches, like the one described here, can be used to rapidly evaluate the potential of different peroxidases (and redox requirements) to be used as bioremediation agents. Our preliminary result shows peroxidases hold tremendous potential for being used in a final wastewater treatment step.
Project description:Transcriptional profiling of A. nidulans comparing starvation for 0 (reference), 12 and 24 h. The main objective was to identify genes specifically regulated during starvation by atmA and xprG. The results of the experiment were further validated by real-time PCR.
Project description:Stable isotope coding technique in combination with mass spectrometry has emerged as a powerful tool to accurately identify and differentially quantify proteins within complex protein mixtures. We present a novel methodology to increase the yield of quantified proteins while maintaining a high stable-isotopic labeling efficacy. With this approach, intact proteins in complex biological sample such as sera are labeled with the designated dual stable isotope coding (DSIC) systems. In brief, intact proteins are coded sequentially with acrylamide to label Cysteine residues (Cys) and with succinic anhydride to label Lysine residues (Lys). Protein samples coded with this dual stable isotope are subjected to an online 2D-HPLC fractionation. The resolved protein fractions are individually digested with trypsin and analyzed with nano LC-MS/MSMS. Our results show that the DSIC labeling efficiency is 100% for Cysteine (Cys) labeled with acrylamide and 98% for Lysine (Lys) labeled with succinic anhydride. A comparative analysis of DSIC labeling and single labeling of Cysteine residues was made. Analysis of an entire anion-exchange chromatography subfraction of sera yielded 165 identified proteins (criteria: error rate <5% and unique peptides >or=2), 104 of which were quantified using the single labeling method (i.e., Cysteine acrylamide labeling only). In contrast, using same criteria for identification, a total 185 proteins were identified and 174 proteins were quantified using the DSIC labeling technique.
Project description:K562 cells (duplicate cultures A & B) are treated with 50 micromolar hemin for 0, 6, 12, 24, 48, 72 hours followed by RNA extraction and gene expression profiling on Affymetrix human U133A arrays and analysis by MAS 5.0 Keywords: other