Profilling of aggregated proteome in human control and AD cases
Ontology highlight
ABSTRACT: Analyzing and comparing proteome profiling between human control and AD cases will be beneficial to understand the molecular changes of insoluble fractions of AD cases.
Project description:Analyzing and comparing proteome profiling between human control and AD cases will be beneficial to understand the molecular changes of insoluble fractions of AD cases.
Project description:Analyzing and comparing proteome profiling between WT, N40K-Tg will be beneficial to understand the protein changes in insoluble fractions.
Project description:Characterizing the detergent insoluble brain proteome of sporadic late-onset Alzheimer’s disease (LOAD) has identified proteins and pathways associated with disease pathogenesis. Similar studies in early onset Alzheimer’s disease cases due to presenilin-1 mutations (PS1-EOAD), along with more detailed correlations with insoluble proteomes from LOAD and AD transgenic rodents, are limited. We therefore utilized quantitative proteomics to identify proteins that were significantly changing in the PS1-EOAD insoluble proteome versus controls. Comparison with the LOAD insoluble proteome identified common pathologic AD markers in addition to unique PS1-EOAD insoluble proteins. Similarly, weighted correlation network analysis (WGCNA) identified PS1-EOAD and LOAD co-expression modules with both like and disparate expression levels. Finally, we compared the human PS1-EOAD insoluble proteome to transgenic AD mouse and rat insoluble proteomes to understand how well these models mimic the human disease. Although many common AD pathologic findings were found in the rodents, there were multiple PS1-EOAD proteome changes not well recapitulated in the animal models. These proteomic studies highlight unique PS1-EOAD proteome changes as compared to LOAD and identify limitations to using AD transgenic rodents to study some aspects of AD.
Project description:Transcriptional profiling of Murine Embryonic Fibroblasts (MEFs) infected with Ad-MyD88 vs. Ad-GFP or mock infected. Three-condition experiment, Ad-MyD88 vs. Ad-GFP vs. Mock infected cells. Biological replicates: 3 Ad-MyD88, 3 Ad-GFP, 3 mock, independently grown and harvested. One replicate per array.
Project description:Transcriptional profiling of Bone-Marrow derived mouse Dendritic Cells (bmDCs) infected with Ad-MyD88 vs. Ad-GFP or mock infected Three-condition experiment, Ad-MyD88 vs. Ad-GFP vs. Mock infected cells. Biological replicates: 3 Ad-MyD88, 3 Ad-GFP, 3 mock, independently grown and harvested. One replicate per array.
Project description:Analyzing and comparing proteome profiling N40K mouse cultured neurons will be beneficial to understand the contributing of RNA splicing dysfunction pathway to Alzheimer's Disease.
Project description:Analyzing and comparing proteome profiling among WT, N40K-Tg, 5xFAD and dTg will be beneficial to understand the interaction between RNA splicing dysfunction pathway and Amyloid cascade.
Project description:Analyzing and comparing proteome profiling among WT, N40K-Tg, 5xFAD and dTg will be beneficial to understand the interaction between RNA splicing dysfunction pathway and Amyloid cascade.
Project description:Characterizing the detergent insoluble brain proteome of sporadic late-onset Alzheimer’s disease (LOAD) has identified proteins and pathways associated with disease pathogenesis. Similar studies in early onset Alzheimer’s disease cases due to presenilin-1 mutations (PS1-EOAD), along with more detailed correlations with insoluble proteomes from LOAD and AD transgenic rodents, are limited. We therefore utilized quantitative proteomics to identify proteins that were significantly changing in the PS1-EOAD insoluble proteome versus controls. Comparison with the LOAD insoluble proteome identified common pathologic AD markers in addition to unique PS1-EOAD insoluble proteins. Similarly, weighted correlation network analysis (WGCNA) identified PS1-EOAD and LOAD co-expression modules with both like and disparate expression levels. Finally, we compared the human PS1-EOAD insoluble proteome to transgenic AD mouse and rat insoluble proteomes to understand how well these models mimic the human disease. Although many common AD pathologic findings were found in the rodents, there were multiple PS1-EOAD proteome changes not well recapitulated in the animal models. These proteomic studies highlight unique PS1-EOAD proteome changes as compared to LOAD and identify limitations to using AD transgenic rodents to study some aspects of AD. This submission exclusively provides the mouse and rat model data.
Project description:Gene expression profiling was performed on frontal and temporal cortex from vascular dementia (VaD), Alzheimer's disease (AD), and non-demented controls (Control) obtained from the University of Michigan Brain Bank. Controls and AD cases had no infarcts in the autopsied hemisphere. Vascular dementia cases had low Braak staging.