Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:Advanced age is associated with chronic low-grade inflammation, which is usually referred to as inflammaging. Elderly are also known to have an altered gut microbiota composition. However, whether inflammaging is a cause or consequence of an altered gut microbiota composition is not clear. In this study gut microbiota from young or old conventional mice was transferred to young germ-free mice. Four weeks after gut microbiota transfer immune cell populations in spleen, Peyer’s patches, and mesenteric lymph nodes from conventionalized germ-free mice were analyzed by flow cytometry. In addition, whole-genome gene expression in the ileum was analyzed by microarray. Gut microbiota composition of donor and recipient mice was analyzed with 16S rDNA sequencing. Here we show by transferring aged microbiota to young germ-free mice that certain bacterial species within the aged microbiota promote inflammaging. This effect was associated with lower levels of Akkermansia and higher levels of TM7 bacteria and Proteobacteria in the aged microbiota after transfer. The aged microbiota promoted inflammation in the small intestine in the germ-free mice and enhanced leakage of inflammatory bacterial components into the circulation was observed. Moreover, the aged microbiota promoted increased T cell activation in the systemic compartment. In conclusion, these data indicate that the gut microbiota from old mice contributes to inflammaging after transfer to young germ-free mice.
Project description:Accumulating evidence indicates that gut microbiota dysbiosis is associated with increased blood-brain barrier (BBB) permeability and contributes to Alzheimer’s disease (AD) pathogenesis. In contrast, the influence of gut microbiota on the blood-cerebrospinal fluid (CSF) barrier has not yet been studied. Here, RNA-seq analysis of choroid plexus tissues of normal colonized specific pathogen-free (SPF) versus decolonized antibiotics-treated mice revealed that the barrier function of choroid plexus is affected by the absence of gut microbiota in the AB mice.
Project description:We transplanted gut microbiota via fecal transfer from TD and ASD children into germ-free wild-type mice, and reveal that colonization with ASD microbiomes induces hallmark changes in sociability, vocalization, and stereotypies. The brains of mice receiving gut microbiota from ASD individuals display alternative splicing patterns for genes dysregulated in the human ASD brain.
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:Two C57BL/6 mice colonies maintained in two rooms in the same specific pathogen free (SPF) facility were found to have different gut microbiota and a mucus phenotype specific for each colony. The thickness and growth of the colon mucus was similar in the two colonies, but one colony had mucus not penetrable to bacteria or bacterial-sized beads, similar to what occurs in free-living wild mice. On the other hand, the other colony had an inner mucus layer that was penetrable to bacteria and beads. These different properties of the mucus in the two rooms were dependent on the microbiota, as the phenotypes were transmissible by transfer of ceacal microbiota to germ-free mice. Mice with an impenetrable mucus layer had increased amounts of Erysipelotrichi, while mice with a penetrable mucus layer had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Thus bacteria affect mucus barrier properties in ways that can have implications for health and disease.
Project description:Irritable Bowel Syndrome (IBS) is a disorder of the gut-brain axis, characterized by altered gut function and frequent psychiatric co-morbidity. Although altered intestinal microbiome profiles have been documented, their relevance to the clinical expression of IBS is unknown. To evaluate a functional role of the microbiota, we colonized germ-free mice with fecal microbiota from healthy controls or IBS patients with accompanying anxiety, and monitored gut function and behavior. Mouse microbiota profiles clustered according to their human donors. Despite having taxonomically similar composition as controls, mice with IBS microbiota had distinct serum metabolomic profiles related to neuro- and immunomodulation. Mice with IBS, but not control microbiota, exhibited faster gastrointestinal transit, intestinal barrier dysfunction, innate immune activation and anxiety-like behavior. These results support the notion that the microbiota contributes to both intestinal and behavioral manifestations of IBS and rationalize the use of microbiota-directed therapies in ameliorating IBS.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host's mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:The effect of oral microbiota on the intestinal microbiota has garnered growing attention as a mechanism linking periodontal diseases to systemic diseases. However, the salivary microbiota is diverse and comprises numerous bacteria with a largely similar composition in healthy individuals and periodontitis patients. Thus, the systemic effects of small differences in the oral microbiota are unclear. In this study, we explored how health-associated and periodontitis-associated salivary microbiota differently colonized the intestine and their subsequent systemic effects by analyzing the hepatic gene expression and serum metabolomic profiles. The salivary microbiota was collected from a healthy individual and a periodontitis patient and gavaged into C57BL/6NJcl[GF] mice. Samples were collected five weeks after administration. Gut microbial communities were analyzed by 16S ribosomal RNA gene sequencing. Hepatic gene expression profiles were analyzed using a DNA microarray and quantitative polymerase chain reaction. Serum metabolites were analyzed by capillary electrophoresis time-of-flight mass spectrometry. The gut microbial composition at the genus level was significantly different between periodontitis-associated microbiota-administered (PAO) and health-associated oral microbiota-administered (HAO) mice. The hepatic gene expression profile demonstrated a distinct pattern between the two groups, with higher expression of Neat1, Mt1, Mt2, and Spindlin1, which are involved in lipid and glucose metabolism. Disease-associated metabolites such as 2-hydroxyisobutyric acid and hydroxybenzoic acid were elevated in PAO mice. These metabolites were significantly correlated with Bifidobacterium, Atomobium, Campylobacter, and Haemophilus, which are characteristic taxa in PAO mice. Conversely, health-associated oral microbiota were associated with higher levels of beneficial serum metabolites in HAO mice. The multi-omics approach used in this study revealed that periodontitis-associated oral microbiota is associated with the induction of disease phenotype when they colonized the gut of germ-free mice.
Project description:Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which in turn changes the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology and gene expression, day 21-old germ-free mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity however, SMM mice had higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there were higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 (ILC2) were increased in MFM mice supplemented with HMOs while in the spleen, they were increased in SMM+HMOs mice. Similarly, serum immunoglobulin A (IgA) was also elevated in MFM+HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data shows that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response and intestinal gene expression in a mouse model.