Project description:We conducted micro-array analysis to quantify the global transcriptome variations in leaves through the course of the year allowing for identification of changing developmental signals. We used RNA samples from pre-formed and mature leaves in the upper crown of a sexually mature Populus deltoides tree 2 hours after sunrise.
Project description:In addition to leaves, the main site of photosynthetic reactions, active photosynthesis also takes place in stems, siliques and tree trunks. Although non-foliar photosynthesis has a marked effect on plant growth and yield, only limited information on the expression patterns of photosynthesis-related genes and the structure of photosynthetic machinery in different plant organs has been available. Here, we report the results of transcriptomic analysis of various organs of Arabidopsis thaliana and compare the gene expression profiles of young and mature leaves with a special focus on photosynthetic genes. Further, we analyzed the composition and organization of the photosynthetic electron transfer machinery in leaves, stems and green siliques at the protein level using BN-PAGE. RNA-Seq analysis revealed unique gene expression profiles in different plant organs and showed major differences in the expression of photosynthesis-related genes in young as compared to mature rosettes. Gel-based proteomic analysis of the thylakoid protein complex organization further showed that all studied plant organs contain the necessary components of the photosynthetic electron transfer chain. Intriguingly, stems accumulate high amounts of PSI-NDH complex, which has previously been implicated in cyclic electron transfer.
Project description:Methanol is considered as an interesting carbon source in biobased microbial production processes. As Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies on the response of this organism to methanol. C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be up-regulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The deletion mutants aldadhE and aldmshC were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF recently identified by us. Similar to ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogeneous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway.
Project description:Computational mass spectrometry study involving LC-MS/MS analysis of methanol extracts of lyophilized leaves of Piper rubro-venosum to assess whether the names Piper rubro-venosum and Piper crocatum refer to one species of Piper. A continuation of a research on Piper betle variants (https://doi.org/10.3390/plants10112510).