Project description:Monoclonal antibodies (mAbs) are important therapeutic glycoproteins, but their large size and structural complexity make them difficult to rapidly characterize. Top-down mass spectrometry (MS) has the potential to overcome challenges of other common approaches by minimizing sample preparation and preserving endogenous modifications. However, comprehensive mAb characterization requires generation of many, well-resolved fragments and remains challenging. While ETD retains modifications and cleaves disulfide bonds-making it attractive for mAb characterization-it can be less effective for precursors having high m/z values. Activated ion electron transfer dissociation (AI-ETD) uses concurrent infrared photoactivation to promote product ion generation and has proven effective in increasing sequence coverage of intact proteins. Here, we present the first application of AI-ETD to mAb sequencing. For the standard NIST mAb, we observe a high degree of complementarity between fragments generated using standard ETD with a short reaction time and AI-ETD with a long reaction time. Most importantly, AI-ETD reveals disulfide-bound regions that have been intractable, thus far, for sequencing with top-down MS. We conclude AI-ETD has the potential to rapidly and comprehensively analyze intact mAbs.
Project description:The combination of native electrospray ionisation with top-down fragmentation in mass spectrometry allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and co-factors. While this approach is powerful, both native mass spectrometry and top-down mass spectrometry are not yet well standardised, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics (CTDP) initiated a study to develop and test protocols for native mass spectrometry combined with top-down fragmentation of proteins and protein complexes across eleven instruments in nine laboratories. The outcomes are summarised in this report to provide robust benchmarks and a valuable entry point for the scientific community.
Project description:Characterizing whole proteins by top-down proteomics avoids a step of inference encountered in the dominant bottom-up methodology when peptides are assembled computationally into proteins for identification. The direct interrogation of whole proteins and protein complexes from the venom of Ophiophagus hannah (king cobra) provides a sharply clarified view of toxin sequence variation, transit peptide cleavage sites and post-translational modifications (PTMs) likely critical for venom lethality. A tube-gel format for electrophoresis (called GELFrEE) and solution isoelectric focusing were used for protein fractionation prior to LC-MS/MS analysis resulting in 131 protein identifications (18 more than bottom-up) and a total of 184 proteoforms characterized from 14 protein toxin families. Operating both GELFrEE and mass spectrometry to preserve non-covalent interactions generated detailed information about two of the largest venom glycoprotein complexes: the homodimeric L-amino acid oxidase (LAAO, ~130 kDa) and the multi-chain toxin cobra venom factor (~147 kDa). The LAAO complex exhibited two clusters of multi-proteoform complexes corresponding to the presence of 5 or 6 N-glycans moieties, each consistent with a distribution of N-acetyl hexosamines. Employing top-down proteomics in both native and denaturing modes provides unprecedented characterization of venom proteoforms and their complexes. A precise molecular inventory of venom proteins will propel the study of snake toxin variation and the targeted development of new anti-venoms or other biotherapeutics.
Project description:Protein complexes exhibit great diversity in protein membership, post-translational modifications and noncovalent cofactors, enabling them to function as the actuators of many important biological processes. The exposition of these molecular features using current methods lacks either throughput or molecular specificity, ultimately limiting the use of protein complexes as direct analytical targets in a wide range of applications. Here, we apply native proteomics, enabled by a multistage tandem MS approach, to characterize 125 intact endogenous complexes and 217 distinct proteoforms derived from mouse heart and human cancer cell lines in discovery mode. The native conditions preserved soluble protein-protein interactions, high-stoichiometry noncovalent cofactors, covalent modifications to cysteines, and, remarkably, superoxide ligands bound to the metal cofactor of superoxide dismutase 2. These data enable precise compositional analysis of protein complexes as they exist in the cell and demonstrate a new approach that uses MS as a bridge to structural biology.
Project description:Native mass spectrometry (MS) has become an invaluable tool for the characterization of proteins and noncovalent protein complexes under near physiological solution conditions. Here we report the structural characterization of human hemoglobin (Hb), a 64 kDa oxygen-transporting protein complex, by high resolution native top-down MS using electrospray ionization and a 15-Tesla Fourier transform ion cyclotron resonance mass spectrometer. Native MS preserves the noncovalent interactions between the globin subunits, and electron capture dissociation (ECD) produces fragments directly from the intact Hb complex without dissociating the subunits. Using activated ion ECD, we observe the gradual unfolding process of the Hb complex in the gas phase. Without protein ion activation, the native Hb shows very limited ECD fragmentation from the N-termini, suggesting a tightly packed structure of the native complex and therefore a low fragmentation efficiency. Precursor ion activation allows a steady increase in N-terminal fragment ions, while the C-terminal fragments remain limited (38 c ions and four z ions on the α chain; 36 c ions and two z ions on the β chain). This ECD fragmentation pattern suggests that upon activation, the Hb complex starts to unfold from the N-termini of both subunits, whereas the C-terminal regions and therefore the potential regions involved in the subunit binding interactions remain intact. ECD-MS of the Hb dimer shows similar fragmentation patterns as the Hb tetramer, providing further evidence for the hypothesized unfolding process of the Hb complex in the gas phase. Native top-down ECD-MS allows efficient probing of the Hb complex structure and the subunit binding interactions in the gas phase. It may provide a fast and effective means to probe the structure of novel protein complexes that are intractable to traditional structural characterization tools.
Project description:Native top-down analysis via ETnoD and HCD on the Orbitrap Eclipse of SARS-CoV-2 nucleocapsid (N) protein heterologously expressed in E. coli
Project description:The genus Bothrops is responsible for most part of envenomation accidents in Brazil. Bothrops pubescens is an endemic and neglected species in the Brazilian Pampa Biome. The characterization of its venom is essential since there is no data about it and can be helpful in the discovery of active biomolecules and for a better understanding of its action. We used top-down (TDP), native top-down, and bottom-up proteomic (BUP) approaches to characterize the venom of B. pubescens. We were able to identify 89 protein groups with the BUP approach and 40 unique proteoforms with the TDP approach, demonstrating the similarities and peculiarities of B. pubescens venom. We also identified a dimeric L-amino acid oxidase with using native TDP. Here we present for the first time a bothropic venom characterization through TDP approaches.
Project description:Patents of some therapeutic monoclonal antibodies (mAb) used for cancer treatment are ending soon, allowing for the entry of similar analogs (biosimilars) onto the market. To have a biosimilar approved by health agencies, the manufacturer must typically demonstrate functional and physicochemical similarity between the biosimilar and the approved reference product. Functional similarity is often validated with cell-based assays, but the information gained is limited. In contrast, RNA-seq methods enable a sensitive transcriptomic analysis, providing detailed information on pathways and cellular responses. Trastuzumab inhibits signaling of the cell-surface receptor HER2, which is overexpressed in approximately 30% of all breast cancer patients. Here, we compare the functional effect of the mAb Trastuzumab and a corresponding biosimilar. The SKBR3 breast cancer cell line was treated with the reference product, Trastuzumab (Herceptin®), or a proposed biosimilar (ApoTras), and the cellular transcriptomes were analyzed by RNA-seq. Functional similarity was assessed using two statistical contrasts. One contrast evaluated the mechanism of action by comparing treated samples (Her and ApoTras, n = 16) vs. untreated controls (n = 8). The other contrast directly compared ApoTras (n = 8) vs. Her (n = 8) to determine differences in expression between treatments. A gene set overrepresentation analysis of DEG for mAb treatments revealed mechanisms of action, which were consistent with known trastuzumab effects.