Project description:To identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD) Three-way ANOVA of microarray data from frontal cortex, temporal cortex and hippocampus with presence/absence of AD and vascular dementia, and sex, as factors revealed that the gene expression profile is most significantly altered in the hippocampi of AD brains. Comparative analyses of the brains of AD patients and a mouse model of AD showed that genes involved in non-insulin dependent DM and obesity were significantly altered in both, as were genes related to psychiatric disorders and Alzheimer’s disease. We prepared RNA samples from the gray matter of frontal and temporal cortices and hippocampi derived from 88 postmortem brains, among which 26 cases were pathologically diagnosed as having AD or an AD-like disorder. High-quality RNA (RIN≧6.9) samples were subjected to microarray analysis using the Affymetrix Human Gene 1.0 ST platform, and only those results that passed examinations for quality assurance and quality control of the Human Gene 1.0 ST arrays were retrieved. In total, we obtained gene expression profiles from the following samples: 33 frontal cortex samples, among which 15 were from AD patients; 29 temporal cortex samples, among which 10 were from AD patients; 17 hippocampus samples, among which seven were from AD patients
Project description:The main goal of the study was to measure the epigenetic age (also known as DNA methylation age) of human tissues and to relate it to chronological age. Toward this end, we used the epigenetic clock software described in Horvath S (n=2013) DNA methylation age of human tissues and cell types. Genome Biology.2013, 14:R115. DOI: 10.1186/10.1186/gb-2013-14-10-r115 PMID: 24138928 Human DNA methylation Beadchip v1.2 was used to obtain n=260 Illumina DNA methylation array from the following human Brain regions: caudate nucleus (n=n=12), cingulate gyrus (n=n12), cerebellum (n=32), frontal cortex (n=41), hippocampus (n=25), midBrain (n=18), motor cortex (n=33), occipital cortex (n=33), parietal lobe (n=23), sensory cortex (n=12), temporal cortex (n=29), visual cortex (n=11).
Project description:Layer II stellate neurons (entorhinal cortex) and layer III cortical neurons (hippocampus CA1, middle temporal gyrus, posterior cingulate, superior frontal gyrus, primary visual cortex) were gene expression profiled. Brain regions are from non-demented individuals with intermediate Alzheimer's disease neuropathologies Keywords: neuronal gene expression profiling
Project description:This dataset contains microarray data from normal controls (aged 20-99 yrs) and Alzheimer's disease cases, from 4 brain regions: hippocampus, entorhinal cortex, superior frontal cortex, post-central gyrus. Changes in expression of synaptic and immune related genes were analyzed, investigating age-related changes and AD-related changes, and region-specific patterns of change. These AD cases were processed simultaneously with the control cases (young and aged) included in GSE11882 (GSE11882 dataset contains data exclusively from normal control brains).
Project description:Here we used mass spectrometry-based proteomics technology to explore SEPs with potential function in five brain regions of the mouse. SEPs with unique peptides were identified in hippocampus, frontal cortex, temporal cortex, occipital cortex and parietal cortex.
Project description:Inbred mouse strains differ in their innate anxiety levels. We used RNA-sequencing to identify gene expression differences in hippocampus and frontal cortex of six mouse strains.
Project description:4 samples from 9 brain regions Brain tissue from the New South Wales Tissue Resource Centre, 9 brain regions, 4 samples each: 1 male alcoholic, 1 female alcoholic, 1 male control, 1 female control. Brain regions: pre-frontal cortex, cerebral cortex, visual cortex, thalamus, hippocampus, amygdala, caudate nucleus, putamen, cerebellum
Project description:Survey of gene expression in ten common inbred strains of laboratory mouse. Seven brain regions examined: amygdala, basal ganglia, cerebellum, frontal cortex, hippocampus, cingulate cortex, olfactory bulb. Experiment Overall Design: Tissue from three animals was pooled on each array. Three biological replicates per strainxregion condition. Animals were 4-5 weeks of age.
Project description:In order to elucidate the molecular mechanisms of action of Phenytoin, we examined by microarrays the effects of prolonged administration of Phenytoin on gene expression in hippocampus and frontal cortex of Sprague-Dawley rats chronically treated with Phenytoin.
Project description:Survey of gene expression in ten common inbred strains of laboratory mouse. Seven brain regions examined: amygdala, basal ganglia, cerebellum, frontal cortex, hippocampus, cingulate cortex, olfactory bulb. Keywords: Genetic background and brain region Sample data tables were removed because the ID_REF identifiers did not match the platform IDs