Project description:ObjectivesBlood lactate measurements are common as a marker of skeletal muscle metabolism in sport medicine. Due to the close equilibrium between the extracellular and intramyocellular space, plasma lactate is a more accurate estimate of muscle lactate. However, whole blood-based lactate measurements are more convenient in field use. The purpose of this investigation was therefore (1) to establish a plasma-converting lactate formula for field use, and (2) to validate the computed plasma lactate levels by comparison to a laboratory standard method.Design and methodsA total of 91 venous samples were taken from 6 individuals with type 1 diabetes during resting and exercise conditions and assessed for whole blood and plasma lactate using the YSI 2300 analyzer. A linear model was applied to establish a formula for converting whole blood lactate to plasma lactate. The validity of computed plasma lactate values was assessed by comparison to a laboratory standard method.ResultsWhole blood YSI lactate could be converted to plasma YSI values (slope 1.66, intercept 0.12) for samples with normal hematocrit. Computed plasma levels compared to values determined by the laboratory standard method using Passing-Bablok regression yielded a slope of 1.03 (95%CI:0.99:1.08) with an intercept of -0.11 (95%CI:-0.18:-0.06).ConclusionsWhole blood YSI lactate values can be reliably converted into plasma values which are in line with laboratory determined plasma measurements.
Project description:Exercise and physical activity levels influence myokine release from skeletal muscle and contribute to circulating concentrations. Indeed, many myokines, including interleukin (IL)-6, IL-15, secreted protein acidic rich in cysteine (SPARC), and fibroblast growth factor (FGF) 21 are higher in the circulation after an exercise bout. Since these peptides modulate muscle metabolism and can also be targeted toward other tissues to induce adaptations to energy demand, they are of great interest regarding metabolic diseases. Therefore, we set out to compare, in six women with obesity (BMI ≥30 kg/m2) and five healthy women (BMI 22-29.9 kg/m2), the effect of an acute bout of moderate-intensity, continuous cycling exercise (60 min, 60% VO2peak) on the release of myokines (IL-6, IL-8, IL-10, IL-13, IL-15, SPARC, and FGF21) in plasma for a 24-h time course. We found that plasma IL-8 and SPARC levels were reduced in the group of women with obesity, whereas plasma IL-13 concentrations were elevated in comparison to non-obese women both before and after the exercise bout. We also found that plasma FGF21 concentration during the 24 h following the bout of exercise was regulated differently in the non-obese in comparison to obese women. Plasma concentrations of FGF21, IL-6, IL-8, IL-15, and IL-18 were regulated by acute exercise. Our results confirm the results of others concerning exercise regulation of circulating myokines while providing insight into the time course of myokine release in circulation after an acute exercise bout and the differences in circulating myokines after exercise in women with or without obesity.
Project description:BackgroundRifapentine exposure is associated with bactericidal activity against Mycobacterium tuberculosis, but high interindividual variation in plasma concentrations is encountered.ObjectivesTo investigate a genomic association with interindividual variation of rifapentine exposure, SNPs of six human genes involving rifamycin metabolism (AADAC, CES2), drug transport (SLCO1B1, SLCO1B3) and gene regulation (HNF4A, PXR) were evaluated.MethodsWe characterized these genes in 173 adult participants in treatment trials of the Tuberculosis Trials Consortium. Participants were stratified by self-identified race (black or non-black), and rifapentine AUC from 0 to 24 h (AUC0-24) was adjusted by analysis of covariance for SNPs, rifapentine dose, sex, food and HIV coinfection. This study was registered at ClinicalTrials.gov under identifier NCT01043575.ResultsThe effect on rifapentine least squares mean AUC0-24 in black participants overall decreased by -10.2% for AADAC rs1803155 G versus A allele (Wald test: P = 0.03; false discovery rate, 0.10). Black participants with one G allele in AADAC rs1803155 were three times as likely to have below target bactericidal rifapentine exposure than black participants with the A allele (OR, 2.97; 95% CI: 1.16, 7.58). With two G alleles, the OR was greater. In non-black participants, AADAC rs1803155 SNP was not associated with rifapentine exposure. In both black and non-black participants, other evaluated genes were not associated with rifapentine exposure (P > 0.05; false discovery rate > 0.10).ConclusionsRifapentine exposure in black participants varied with AADAC rs1803155 genotype and the G allele was more likely to be associated with below bactericidal target rifapentine exposure. Further pharmacogenomic study is needed to characterize the association of the AADAC rs1803155 with inadequate rifapentine exposure in different patient groups.
Project description:BackgroundBranched-chain amino acids (BCAA) i.e., leucine (Leu), isoleucine (Ile) and valine (Val) are important amino acids, which metabolism play a role in maintaining system energy homeostasis at rest and during exercise. As recently shown lowering of circulating BCAA level improves insulin sensitivity and cardiac metabolic health. However, little is known concerning the impact of a single bout of incremental exercise and physical training on the changes in blood BCAA. The present study aimed to determine the impact of a gradually increasing exercise intensity-up to maximal oxygen uptake (VO2max) on the changes of the plasma BCAA [∑BCAA]pl, before and after 5-weeks of moderate-intensity endurance training (ET).MethodsTen healthy young, untrained men performed an incremental cycling exercise test up to exhaustion to reach VO2max, before and after ET.ResultsWe have found that exercise of low-to-moderate intensity (up to ∼50% of VO2max lasting about 12 min) had no significant effect on the [∑BCAA]pl, however the exercise of higher intensity (above 70% of VO2max lasting about 10 min) resulted in a pronounced decrease (p < 0.05) in [∑BCAA]pl. The lowering of plasma BCAA when performing exercise of higher intensity was preceded by a significant increase in plasma lactate concentration, showing that a significant attenuation of BCAA during incremental exercise coincides with exercise-induced acceleration of glycogen utilization. In addition, endurance training, which significantly increased power generating capabilities at VO2max (p = 0.004) had no significant impact on the changes of [∑BCAA]pl during this incremental exercise.ConclusionWe have concluded that an exercise of moderate intensity of relatively short duration generally has no effect on the [∑BCAA]pl in young, healthy men, whereas significant decrease in [∑BCAA]pl occurs when performing exercise in heavy-intensity domain. The impact of exercise intensity on the plasma BCAA concentration seems to be especially important for patients with cardiometabolic risk undertaken cardiac rehabilitation or recreational activity.
Project description:Synthesis of ATP by the F1F0 ATP synthase in mitochondria and most bacteria is energized by the proton motive force (pmf) established and maintained by respiratory chain enzymes. Conversely, in the presence of ATP and in the absence of a pmf, the enzyme works as an ATP-driven proton pump. Here, we investigate how high concentrations of ATP affect the enzymatic activity of the F1F0 ATP synthase under high pmf conditions, which is the typical situation in mitochondria or growing bacteria. Using the ATP analogue adenosine 5'-O-(1-thiotriphosphate) (ATPαS), we have developed a modified luminescence-based assay to measure ATP synthesis in the presence of millimolar ATP concentrations, replacing an assay using radioactive nucleotides. In inverted membrane vesicles of E. coli, we found that under saturating pmf conditions, ATP synthesis was reduced to ~10% at 5 mM ATPαS. This reduction was reversed by ADP, but not Pi, indicating that the ATP/ADP ratio controls the ATP synthesis rate. Our data suggests that the ATP/ADP ratio ~30 in growing E. coli limits the ATP synthesis rate to ~20% of the maximal rate possible at the applied pmf and that the rate reduction occurs via product inhibition rather than an increased ATP hydrolysis rate.
Project description:Caloric restriction (CR) decreases circulating triiodothyronine (T(3)) concentration. However, it is not known if this effect is due to body fat mass reductions or due to CR, per se. The purpose of this study was to test the hypothesis that plasma T(3) concentration decreases with CR-induced reductions in fat mass but not in response to similar decreases in fat mass that are induced by exercise. Sedentary, nonobese 50- to 60-year-old men and women with no clinical evidence of cardiovascular or metabolic disease and not taking thyroid medications were randomly assigned to 12 months of caloric restriction (n = 18) or exercise-induced weight loss (n = 17) or to a control group (n = 9). Body weight and composition and plasma concentrations of the thyroid hormones T(3), thyrotropin (TSH), thyroxine (T(4)), and free thyroxine (FT(4)) were measured at baseline and 12 months. Fat mass changed significantly in the CR (-6.3 +/- 1.0 kg) and exercise (-5.5 +/- 1.0 kg) groups but not in the control group (-0.6 +/- 1.4 kg). The changes were not significantly different between the CR and exercise groups. Plasma T(3) concentration decreased in the CR group (-9.8 +/- 2.0 ng/dL, p < 0.0001) but not in the exercise (-3.8 +/- 2.1 ng/dL, p = 0.07) or control (-1.3 +/- 2.8 ng/dL, p = 0.65) groups. TSH, T(4), and FT(4) did not change in any of the study groups. Twelve months of CR decreased circulating T(3) concentrations in middle-aged adults. This effect does not appear to be attributable to changes in body fat mass because a comparable decrease in T(3) concentration was not observed in response to an exercise-induced fat mass reduction.
Project description:Purpose: The aim of this study is to investigate the translational regulation of skeletal muscle during acute endurance exercise. Methods: We used mRNA-Seq and ribosome profiling to examine transcriptional and translational regulation, respectively. Result: There were clear distinctions between the profiles of transcription and translation even at a basal condition. TOP-motif genes were translationally suppressed immediately after the exercise. Other genes, such as Slc25a25 was significantly translationally up-regulated presumably in a mTOR-independent manner. Conclusion: There were diverse regulation between transcription and translation. Although many focused on overall protein synthesis to understand the effect of exercise, translational regulation of individual genes are required. Transcriptional and translational profiles of mouse gastrocnemius with or without acute endurance exercise were generated using Ion PGM sequencer.
Project description:Efavirenz-based antiretroviral therapy (ART) has been associated with dyslipidemia and dysglycemia, risk factors for cardiovascular disease. However, the pathogenesis is not well understood. We characterized relationships between plasma efavirenz concentrations and lipid and glucose concentrations in HIV-infected South Africans.Participants on efavirenz-based ART were enrolled into a cross-sectional study. The oral glucose tolerance test was performed after an overnight fast, and plasma drawn for mid-dosing interval efavirenz, fasting total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, and triglycerides concentrations.Among 106 participants (77 women), median age was 38 years, median CD4 + T-cell count was 322 cells/μL, median duration on ART was 18 months, and median (interquartile range) efavirenz concentration was 2.23 (1.66 to 4.10) μg/mL. On multivariable analyses (adjusting for age, sex, body mass index, and ART duration) doubling of efavirenz concentrations resulted in mean changes in mmol/L (95%CI) of: total cholesterol (0.40 [0.22 to 0.59]), LDL cholesterol (0.19 [0.04 to 0.30]), HDL cholesterol (0.14 [0.07 to 0.20]), triglycerides (0.17 [0.03 to 0.33]), fasting glucose (0.18 [0.03 to 0.33]), and 2-h glucose concentrations (0.33 [0.08 to 0.60]). Among 57 participants with CYP2B6 genotype data, associations between slow metabolizer genotypes and metabolic profiles were generally consistent with those for measured efavirenz concentrations.Higher plasma efavirenz concentrations are associated with higher plasma lipid and glucose concentrations. This may have implications for long-term cardiovascular complications of efavirenz-based ART, particularly among populations with high prevalence of CYP2B6 slow metabolizer genotypes.
Project description:MicroRNAs are important negative regulators of protein coding gene expression, and have been studied intensively over the last few years. To this purpose, different measurement platforms to determine their RNA abundance levels in biological samples have been developed. In this study, we have systematically compared 12 commercially available microRNA expression platforms by measuring an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples, and synthetic spikes from homologous microRNA family members. We developed novel quality metrics in order to objectively assess platform performance of very different technologies such as small RNA sequencing, RT-qPCR and (microarray) hybridization. We assessed reproducibility, sensitivity, quantitative performance, and specificity. The results indicate that each method has its strengths and weaknesses, which helps guiding informed selection of a quantitative microRNA gene expression platform in function of particular study goals.
Project description:BackgroundCarotenoids have been hypothesized to reduce the risk of many diseases, but associations with intakes or blood concentrations may arise from other constituents of fruit and vegetables. Use of genetic variation in β-carotene 15,15'-monooxygenase 1 (BCMO1), a key enzyme in provitamin A carotenoid metabolism, as a surrogate for carotenoid exposure may aid in determining the role of carotenoids unconfounded by other carotenoid-containing food constituents, but important variants must be identified.ObjectiveOur goal was to select BCMO1 single nucleotide polymorphisms (SNPs) that predict plasma carotenoid concentrations for use in future epidemiologic studies.DesignWe assessed the associations between 224 SNPs in BCMO1 ± 20 kb imputed from the 1000 Genomes Project EUR reference panel with plasma carotenoid and retinol concentrations by using 7 case-control data sets (n = 2344) within the Nurses' Health Study, randomly divided into training (n = 1563) and testing (n = 781) data sets. SNPs were chosen in the training data set through stepwise selection in multivariate linear regression models; β-coefficients were used as weights in weighted gene scores.ResultsTwo or 3 SNPs were selected as predictors of β-carotene, α-carotene, β-cryptoxanthin, and lutein/zeaxanthin. In the testing data set, the weighted gene scores were significantly associated with plasma concentrations of the corresponding carotenoid (P = 6.4 × 10⁻¹², 3.3 × 10⁻³, 0.02, and 1.8 × 10⁻¹⁷, respectively), and concentrations differed by 48%, 15%, 15%, and 36%, respectively, across extreme score quintiles.ConclusionsSNPs in BCMO1 are associated with plasma carotenoid concentrations. Given adequate sample size, the gene scores may be useful surrogates for carotenoid exposure in future studies.