Project description:Increased plasma uric acid (hyperuricemia) has been associated with worse outcomes for chronic kidney disease (CKD). But some attempts to control uric acid (UA) in large-cohort clinical trials did not produce clinically meaningful benefits for CKD. Some studies suggest that only hyperuricemia with crystals, but not asymptomatic hyperuricemia promotes the progression of CKD. Salt-sensitivity (SS) in blood pressure is a prevalent trait that is sexually dimorphic and results in kidney damage. But the connection between hyperuricemia and SS hypertension (HTN) is still unclear. Here we tested the connection between the two using both male and female Dahl SS rats, a well-establish model of SS HTN. We hypothesized that mild asymptomatic hyperuricemia is beneficial in controlling the progression of SS HTN. A uricase inhibitor, oxonic acid (2%) (Oxo) was used to induce hyperuricemia and high-salt (HS) (4% NaCl) diet was used to induce SS HTN. After 3 weeks, in response to oxonic acid supplementation, both sexes showed a significant increase of UA in plasma compared to their respective HS-only controls (Males: 0.63 ±0.07 vs. 2.17 ±0.34; Females: 0.78 ±0.15 vs. 2.04 ±0.35 mg/dl, HS vs. HS/oxo). Interestingly, only male HS/oxo rats showed a significant increase in uricosuria (Males: 0.23 ±0.03 vs. 0.45 ±0.06; Femaels: 0.26 ±0.06 vs. 0.26 ±0.001 UA/Cre, HS vs. HS/oxo). Moreover, the mild hyperuricemia was associated with a significant attenuation of the progression and magnitude of the mean arterial pressure in male but not female rats (Males: 157 ±3 vs. 136 ±3; Females: 155 ±6 vs. 154 ±5 mmHg, HS vs. HS/oxo). Xanthine oxidase (XO) is one of the enzymes that produce UA, and its activity has been shown to affect HTN as well. Therefore, we examined the level of XO activity in the plasma after the treatment. While there was no difference in the activity based on the diet within each sex, females had significantly lower levels of XO activity compared to males in each of the diets. To further investigate the beneficial phenotype seen in male rats, we evaluate changes in the progression of renal pathology. The HS/oxo group compared to the HS group had a lower kidney weight/body weight ratio and lower protein cast accumulation, indicating lower kidney damage. Furthermore, the HS/Oxo treated males had less oxidative damage in their tubules than the HS-only males. Bulk-RNA seq done on the male kidneys revealed that attenuated HTN phenotype was associated with an increased expression in Mas1 (MAS receptor), Klk-1 (Kallikrein-1), and Pcsk6 (PCSK6 enzyme) which can all lead to the activation of different vasodilatory pathways. Our study showed that in male but not female Dahl SS rats, asymptomatic mild hyperuricemia accompanied by hyperuricosuria ameliorates the progression of SS HTN and protects kidneys from further damage. Thus, our findings challenge the notion of hyperuricemia being inherently detrimental to health and highlight that this is an oversimplified view of UA’s role in disease.
Project description:The assessment of salt sensitivity of blood pressure is difficult because of the lack of universal consensus on definition. Regardless of the variability in the definition of salt sensitivity, increased salt intake, independent of the actual level of blood pressure, is also a risk factor for cardiovascular morbidity and mortality and kidney disease. A modest reduction in salt intake results in an immediate decrease in blood pressure, with long-term beneficial consequences. However, some have suggested that dietary sodium restriction may not be beneficial to everyone. Thus, there is a need to distinguish salt-sensitive from salt-resistant individuals, but it has been difficult to do so with phenotypic studies. Therefore, there is a need to determine the genes that are involved in salt sensitivity. This review focuses on genes associated with salt sensitivity, with emphasis on the variants associated with salt sensitivity in humans that are not due to monogenic causes. Special emphasis is given to gene variants associated with salt sensitivity whose protein products interfere with cell function and increase blood pressure in transgenic mice.
Project description:Substitution of chromosome 13 from Brown Norway BN/SsNHsd/Mcw (BN/Mcw) rats into the Dahl salt-sensitive SS/JrHsd/Mcw (SS/Mcw) rats resulted in substantial reduction of blood pressure salt sensitivity in this consomic rat strain designated SSBN13. In the present study, we attempted to identify genes associated with salt-sensitive hypertension by utilizing a custom, known-gene cDNA microarray to compare the mRNA expression profiles in the renal medulla (a tissue playing a pivotal role in long-term blood pressure regulation) of SS/Mcw and SSBN13 rats on either low-salt (0.4% NaCl) or high-salt (4% NaCl, 2 wk) diets. Keywords: Dahl S rat; blood pressure; kidney; consomic rats
Project description:The results of this study identified a number of pathways potentially important for the amelioration of hypertension and renal injury in SS-13BN/Mcw rats, and these results generated a series of testable hypotheses related to the role of the renal medulla in the complex mechanism of salt-sensitive hypertension. Keywords: time course, microarray; 11ß-hydroxysteroid dehydrogenase; glucagon receptor; extracellular matrix; apoptosis
Project description:The results of this study identified a number of pathways potentially important for the amelioration of hypertension and renal injury in SS-13BN/Mcw rats, and these results generated a series of testable hypotheses related to the role of the renal medulla in the complex mechanism of salt-sensitive hypertension. Rats were paired for microarray hybridization, and the results were analyzed. Each of the four between-group comparisons comprised three pairs of rats examined by six microarrays with dye switching for each pair. Dye switching was not necessary for within-group comparisons, because the two rats of each pair were equivalent in terms of their treatment status. The expression data from the present study were combined with those from 24 microarrays hybridized in our previous study and used to identify genes exhibiting the most distinct temporal patterns of expression between SS and SS-13BN/Mcw over the time course studied.
Project description:Substitution of chromosome 13 from Brown Norway BN/SsNHsd/Mcw (BN/Mcw) rats into the Dahl salt-sensitive SS/JrHsd/Mcw (SS/Mcw) rats resulted in substantial reduction of blood pressure salt sensitivity in this consomic rat strain designated SSBN13. In the present study, we attempted to identify genes associated with salt-sensitive hypertension by utilizing a custom, known-gene cDNA microarray to compare the mRNA expression profiles in the renal medulla (a tissue playing a pivotal role in long-term blood pressure regulation) of SS/Mcw and SSBN13 rats on either low-salt (0.4% NaCl) or high-salt (4% NaCl, 2 wk) diets. To increase the reliability of microarray data, we designed a four-way comparison experiment incorporating several levels of replication and developed a conservative yet robust data analysis method. Using this approach, from the 1,751 genes examined (representing more than 80% of all currently known rat genes), we identified 80 as being differentially expressed in at least 1 of the 4 comparisons.
Project description:The exclusive expression of uromodulin in the kidneys has made it an intriguing protein in kidney and cardiovascular research. Genome-wide association studies discovered variants of uromodulin that are associated with chronic kidney diseases and hypertension. Urinary and circulating uromodulin levels reflect kidney and cardiovascular health as well as overall mortality. More recently, Mendelian randomization studies have shown that genetically driven levels of uromodulin have a causal and adverse effect on kidney function. On a mechanistic level, salt sensitivity is an important factor in the pathophysiology of hypertension, and uromodulin is involved in salt reabsorption via the NKCC2 (Na+-K+-2Cl- cotransporter) on epithelial cells of the ascending limb of loop of Henle. In this review, we provide an overview of the multifaceted physiology and pathophysiology of uromodulin including recent advances in its genetics; cellular trafficking; and mechanistic and clinical studies undertaken to understand the complex relationship between uromodulin, blood pressure, and kidney function. We focus on tubular sodium reabsorption as one of the best understood and pathophysiologically and clinically most important roles of uromodulin, which can lead to therapeutic interventions.
Project description:Salt sensitivity is estimated to be present in 51% of the hypertensive and 26% of the normotensive populations. The individual blood pressure response to salt is heterogeneous and possibly related to inherited susceptibility. Although the mechanisms underlying salt sensitivity are complex and not well understood, genetics can help to determine the blood response to salt intake. So far only a few genes have been found to be associated with salt-sensitive hypertension using candidate gene association studies. The kidney is critical to overall fluid and electrolyte balance and long-term regulation of blood pressure. Thus, the pathogenesis of salt sensitivity must involve a derangement in renal NaCl handling: an inability to decrease renal sodium transport and increase sodium excretion in the face of an increase in NaCl load that could be caused by aberrant counter-regulatory natriuretic/antinatriuretic pathways. We review here the literature regarding the gene variants associated with salt-sensitive hypertension and how the presence of these gene variants influences the response to antihypertensive therapy.
Project description:Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Project description:Background and objectivesHypertension is a common aging-related disorder. Salt intake is one of the main environmental factors contributing to the development of hypertension. Transgenic mice with one-half Klotho deficiency displayed a spontaneous BP increase and salt-sensitive hypertension in response to high sodium intake. Usually circulating levels of α-Klotho decrease with age, and this reduction may be stronger in patients with several aging-related diseases. This study aimed at exploring the association of Klotho with salt sensitivity in humans.Design, setting, participants, & measurementsThe role of Klotho polymorphisms and α-Klotho serum levels was evaluated in patients with hypertension who were treatment naive and underwent an acute salt-sensitivity test (discovery n=673, intravenous 2 L of 0.9% saline in 2 hours). Salt sensitivity was defined as a mean BP increase of >4 mm Hg at the end of the infusion. A total of 32 single nucleotide polymorphisms in the Klotho gene (KL), previously identified with a genome-wide association study, were used in the genetic analysis and studied for a pressure-natriuresis relationship.ResultsOf the patients with hypertension, 35% were classified as salt sensitive. The most relevant polymorphism associated with pressure natriuresis was the common missense single nucleotide polymorphism rs9536314, and the GG and GT genotypes were more represented among patients who were salt sensitive (P=0.001). Those carrying the G allele showed a less steep pressure-natriuresis relationship, meaning that a significant increase in mean BP was needed to excrete the same quantity of salt compared with patients who were salt resistant. KL rs9536314 also replicated the pressure-natriuresis association in an independent replication cohort (n=193) and in the combined analysis (n=866). There was an inverse relationship between circulating Klotho and mean BP changes after the saline infusion (r=-0.14, P=0.03). Moreover, circulating α-Klotho was directly related to kidney function at baseline eGFR (r=0.22, P<0.001).ConclusionsKL rs9536314 is associated with salt-sensitive hypertension in patients with hypertension who are treatment naive. Moreover, circulating α-Klotho levels were mainly related to diastolic BP changes at the end of a salt load and to eGFR as an expression of kidney aging.