Project description:Whether glucose is predominantly metabolized via oxidative phosphorylation or glycolysis differs between quiescent versus proliferating cells, including tumor cells. However, how glucose metabolism is coordinated with cell cycle in mammalian cells remains elusive. Here, we report that mammalian cells predominantly utilize the tricarboxylic acid (TCA) cycle in G1 phase, but prefer glycolysis in S phase. Mechanistically, coupling cell cycle with metabolism is largely achieved by timely destruction of IDH1/2, key TCA cycle enzymes, in a Skp2-dependent manner. As such, depleting SKP2 abolishes cell cycle-dependent fluctuation of IDH1 protein abundance, leading to reduced glycolysis in S phase. Furthermore, elevated Skp2 abundance in prostate cancer cells destabilizes IDH1 to favor glycolysis and subsequent tumorigenesis. Therefore, our study reveals a mechanistic link between two cancer hallmarks, aberrant cell cycle and addiction to glycolysis, and provides the underlying mechanism for the coupling of metabolic fluctuation with periodic cell cycle in mammalian cells.
Project description:Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation.
Project description:Copper is an essential cofactor for all organisms, and yet it becomes toxic if concentrations exceed a threshold maintained by evolutionarily conserved homeostatic mechanisms. How excess copper induces cell death, however, is unknown. Here, we show in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration. We show that copper-dependent death occurs by means of direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle. This results in lipoylated protein aggregation and subsequent iron-sulfur cluster protein loss, which leads to proteotoxic stress and ultimately cell death. These findings may explain the need for ancient copper homeostatic mechanisms.
Project description:Recent studies have reported that plasma levels of tricarboxylic acid (TCA) cycle metabolites and TCA cycle-related metabolite change in patients with chronic fatigue syndrome (CFS) and in healthy humans after exercise. Exogenous dietary citric acid has been reported to alleviate fatigue during daily activities and after exercise. However, it is unknown whether dietary citric acid affects the plasma levels of these metabolites. Therefore, the present study aimed to investigate the effects of exogenously administered citric acid on TCA cycle metabolites and TCA cycle-related metabolites in plasma. Sprague-Dawley rats were divided into control and citric acid groups. We evaluated the effect of exogenous dietary citric acid on the plasma TCA cycle and TCA cycle-related metabolites by metabolome analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). TCA cycle metabolites, including plasma citrate, cis-aconitate, and isocitrate, were significantly elevated after exogenous administration of citric acid. Anaplerotic amino acids, which are converted to TCA cycle metabolites, such as serine, glycine, tryptophan, lysine, leucine, histidine, glutamine, arginine, isoleucine, methionine, valine, and phenylalanine, also showed significantly elevated levels. Citric acid administration significantly increased the levels of initial TCA cycle metabolites in the plasma. This increase after administration of citric acid was shown to be opposite to the metabolic changes observed in patients with CFS. These results contribute novel insight into the fatigue alleviation mechanism of citric acid.
Project description:Chronic kidney disease (CKD) is a public health problem with very high prevalence and mortality. Yet, there is a paucity of effective treatment options, partly due to insufficient knowledge of underlying pathophysiology. We combined metabolomics (GCMS) with kidney gene expression studies to identify metabolic pathways that are altered in adults with non-diabetic stage 3-4 CKD versus healthy adults. Urinary excretion rate of 27 metabolites and plasma concentration of 33 metabolites differed significantly in CKD patients versus controls (estimate range-68% to +113%). Pathway analysis revealed that the citric acid cycle was the most significantly affected, with urinary excretion of citrate, cis-aconitate, isocitrate, 2-oxoglutarate and succinate reduced by 40-68%. Reduction of the citric acid cycle metabolites in urine was replicated in an independent cohort. Expression of genes regulating aconitate, isocitrate, 2-oxoglutarate and succinate were significantly reduced in kidney biopsies. We observed increased urine citrate excretion (+74%, p=0.00009) and plasma 2-oxoglutarate concentrations (+12%, p=0.002) in CKD patients during treatment with a vitamin-D receptor agonist in a randomized trial. In conclusion, urinary excretion of citric acid cycle metabolites and renal expression of genes regulating these metabolites were reduced in non-diabetic CKD. This supports the emerging view of CKD as a state of mitochondrial dysfunction.
Project description:Persister cells constitute a small subpopulation of bacteria that display remarkably high antibiotic tolerance and for pathogens such as Staphylococcus aureus are suspected as culprits of chronic and recurrent infections. Persisters formed during exponential growth are characterized by low ATP levels but less is known of cells in stationary phase. By enrichment from a transposon mutant library in S. aureus we identified mutants that in this growth phase displayed enhanced persister cell formation. We found that inactivation of either sucA or sucB, encoding the subunits of the α-ketoglutarate dehydrogenase of the tricarboxylic acid cycle (TCA cycle), increased survival to lethal concentrations of ciprofloxacin by 10-100 fold as did inactivation of other TCA cycle genes or atpA encoding a subunit of the F1F0 ATPase. In S. aureus, TCA cycle activity and gene expression are de-repressed in stationary phase but single cells with low expression may be prone to form persisters. While ATP levels were not consistently affected in high persister mutants they commonly displayed reduced membrane potential, and persistence was enhanced by a protein motive force inhibitor. Our results show that persister cell formation in stationary phase does not correlate with ATP levels but is associated with low membrane potential.
Project description:Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of 13C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, 13C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.
Project description:Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria.
Project description:BackgroundAcute-on-chronic liver failure (ACLF) is a refractory disease with high mortality, which is characterized by a pathophysiological process of inflammation-related dysfunction of energy metabolism. Jieduan-Niwan formula (JDNWF) is a eutherapeutic Chinese medicine formula for ACLF. However, the intrinsic mechanism of its anti-ACLF effect still need to be studied systematically.PurposeThis study aimed to investigate the mechanism of JDNWF against ACLF based on altered substance metabolic profile in ACLF the expression levels of related molecules.Materials and methodsThe chemical characteristics of JDNWF were characterized using ultra performance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry. Wistar rats subjected to a long-term CCL4 stimulation followed by a combination of an acute attack with LPS/D-GalN were used to establish the ACLF model. Liver metabolites were analyzed by LC-MS/MS and multivariate analysis. Liver function, coagulation function, histopathology, mitochondrial metabolic enzyme activity and mitochondrial damage markers were evaluated. The protein expression of mitochondrial quality control (MQC) was investigated by western blot.ResultsLiver function, coagulation function, inflammation, oxidative stress and mitochondrial enzyme activity were significantly improved by JDNWF. 108 metabolites are considered as biomarkers of JDNWF in treating ACLF, which were closely related to TCA cycle. It was further suggested that JDNWF alleviated mitochondrial damage and MQC may be potential mechanism of JDNWF improving mitochondrial function.ConclusionsMetabolomics revealed that TCA cycle was impaired in ACLF rats, and JDNWF had a regulatory effect on it. The potential mechanism may be improving the mitochondrial function through MQC pathway, thus restoring energy metabolism.
Project description:The tricarboxylic acid (TCA) cycle is the main source of cellular energy and participates in many metabolic pathways in cells. Recent reports indicate that dysfunction of TCA cycle-related enzymes causes human diseases, such as neurometabolic disorders and tumors, have attracted increasing interest in their unexplained roles. The diseases which develop as a consequence of loss or dysfunction of TCA cycle-related enzymes are distinct, suggesting that each enzyme has a unique function. This review aims to provide a comprehensive overview of the relationship between each TCA cycle-related enzyme and human diseases. We also discuss their functions in the context of both mitochondrial and extra-mitochondrial (or cytoplasmic) enzymes.